cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371967 Irregular triangle T(r,w) read by rows: number of ways of placing w non-attacking wazirs on a 3 X r board.

Original entry on oeis.org

1, 1, 3, 1, 1, 6, 8, 2, 1, 9, 24, 22, 6, 1, 1, 12, 49, 84, 61, 18, 2, 1, 15, 83, 215, 276, 174, 53, 9, 1, 1, 18, 126, 442, 840, 880, 504, 158, 28, 2, 1, 21, 178, 792, 2023, 3063, 2763, 1478, 472, 93, 12, 1, 1, 24, 239, 1292, 4176, 8406, 10692, 8604, 4374, 1416, 297, 38, 2, 1, 27, 309
Offset: 0

Views

Author

R. J. Mathar, Apr 14 2024

Keywords

Examples

			The triangle starts with r>=0 rows and w>=0 wazirs as
  1 ;
  1 3 1 ;
  1 6 8 2  ;
  1 9 24 22 6 1 ;
  1 12 49 84 61 18 2  ;
  1 15 83 215 276 174 53 9 1 ;
  1 18 126 442 840 880 504 158 28 2  ;
  1 21 178 792 2023 3063 2763 1478 472 93 12 1 ;
  1 24 239 1292 4176 8406 10692 8604 4374 1416 297 38 2  ;
  1 27 309 1969 7731 19591 32716 36257 26674 13035 4264 945 142 15 1 ;
  ...
		

Crossrefs

Cf. A051736 (row sums), A035607 (on 2Xr board), A011973 (on 1Xr board), A232833 (on rXr board).
T(n,n) gives A371978.
Row maxima give A371979.
Cf. A007494.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, 1,
          add(`if`(Bits[And](j, l)>0, 0, expand(b(n-1, j)*
          x^add(i, i=Bits[Split](j)))), j=[0, 1, 2, 4, 5]))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Apr 14 2024
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, 1, Sum[If[BitAnd[j, l] > 0, 0, Expand[b[n - 1, j]*x^DigitCount[j, 2, 1]]], {j, {0, 1, 2, 4, 5}}]];
    T[n_] := CoefficientList[b[n, 0], x];
    Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jun 05 2024, after Alois P. Heinz *)

Formula

T(r,0) = 1.
T(r,1) = 3*r.
T(r,2) = A064225(r-1).
T(r,3) = A172229(r).
T(r,4) = 27*r^4/8 -117*r^3/4 +829*r^2/8 -715*r/4 +126. [Siehler Table 3]
T(3,w) = A232833(3,w).
G.f.: (1+x*y) *(1 +x*y +x*y^2 -x^2*y^3)/(1 -x -x*y -x^2*y^3 -2*x^2*y -3*x^2*y^2 -x^3*y^2 +x^3*y^4 +x^4*y^4). - R. J. Mathar, Apr 21 2024