A371980 Sophie Germain primes p such that 4*p + 3 is a composite number.
3, 23, 29, 53, 83, 113, 131, 173, 191, 233, 239, 251, 281, 293, 419, 431, 443, 491, 593, 641, 653, 659, 683, 743, 761, 809, 911, 953, 1013, 1049, 1103, 1223, 1289, 1439, 1499, 1559, 1583, 1601, 1733, 1973, 2003, 2039, 2063, 2069, 2129, 2141, 2273, 2339, 2351, 2393, 2399, 2543, 2549, 2693, 2741, 2753
Offset: 1
Keywords
Examples
a(1) = 3 is prime and 2*3 + 1 = 7 also but not 4*3 + 3 = 15.
Crossrefs
Cf. A005384.
Programs
-
Mathematica
Select[Prime[Range[410]], And[PrimeQ[2 # + 1], CompositeQ[4 # + 3]] &] (* Michael De Vlieger, Apr 19 2024 *)
-
Python
import sympy as sp l = [] for i in range(2,2800): if sp.isprime(i) and sp.isprime(2*i + 1) and not(sp.isprime(4*i + 3)): l.append(i) print(l)