cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371984 Binomial transform of A371460.

Original entry on oeis.org

1, 3, 15, 117, 1227, 16053, 251955, 4613997, 96566667, 2273672133, 59482039395, 1711735382877, 53737315411707, 1827584253650613, 66936582030410835, 2626714554845111757, 109948916113808074347, 4889877314768678051493
Offset: 0

Views

Author

Prabha Sivaramannair, Apr 15 2024

Keywords

Crossrefs

Cf. A371460.

Programs

  • Mathematica
    nn = 17; a[0] = 1; Do[Set[a[n], 2^n + Sum[(3^j - 2^j)*Binomial[n, j]*a[n - j], {j, n}]], {n, nn}]; Array[a, nn + 1, 0] (* Michael De Vlieger, Apr 19 2024 *)
  • SageMath
    def a(n):
        if n==0:
            return 1
        else:
            return sum([(1-(-2)^j)*binomial(n,j)*a(n-j) for j in [1,..,n]])
    list(a(n) for n in [0,..,20])
    
  • SageMath
    f= e^(2*x)/(1 + e^(2*x) - e^(3*x))
    print([(diff(f,x,i)).subs(x=0) for i in [0,..,20]])

Formula

a(0) = 1, a(n) = Sum_{j=1..n} (1-(-2)^j)*binomial(n,j)*a(n-j) for n > 0.
a(0) = 1, a(n) = 2^n + Sum_{j=1..n} (3^j-2^j)*binomial(n,j)*a(n-j) for n > 0.
E.g.f.: exp(2*x)/(1 + exp(2*x) - exp(3*x)).