cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371992 Number of different closest packings of equal spheres for rhombohedral crystals having repeat period n.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 5, 8, 15, 23, 41, 70, 126, 223, 406, 740, 1370, 2545, 4769, 8977, 16985, 32261, 61469, 117488, 225060, 432159, 831235, 1601796, 3090926, 5973198, 11556533, 22385600, 43405353, 84247085, 163661488, 318209920, 619181766, 1205733457, 2349558582, 4581555964, 8939468450, 17453081143, 34094082857
Offset: 1

Views

Author

R. J. Mathar, Apr 15 2024

Keywords

Crossrefs

Programs

  • Mathematica
    fa[p_,q_] := fa[p,q] = (p+q-1)!/(p!q!) - Sum[fa[p/d,q/d]/d, {d, Rest[Intersection@@(Divisors/@{p,q})]}]; (*A051168(p+q,p); Iglesias Eq. (1)*)
    fb[p_,q_] := fb[p,q] = (Quotient[p,2]+Quotient[q,2])!/(Quotient[p,2]!Quotient[q,2]!) - Sum[fb[p/d,q/d], {d, Rest[Intersection@@(Divisors/@{p,q})]}]; (*A180424(p+q,p); Eq. (2)*)
    am[p_] := am[p] = 2^(p-1) - Sum[am[p/d], {d, Rest@Divisors@p}]; (*A000740; Eq. (6)*)
    atf[p_] := atf[p] = 2^(p-1)/p - Sum[atf[p/d]/d, {d, Select[Rest@Divisors@p, OddQ]}];(*A000048; Eq. (9)*)
    a[n_] := Sum[With[{p=n-q}, fa[p,q]+fb[p,q] + If[p==q, am[p]+atf[p]-fa[p,q]-fb[p,q], 0] / 2], {q, Select[Range[n/2], !Divisible[n-2#,3]& (*the opposite condition would give A371991*)]}] / 2; (* Eq. (5) *)
    Table[a[n], {n, 2, 40}] (* Andrei Zabolotskii, May 30 2025 *)
  • PARI
    apply( {A371992(n)=sum(q=1, n\2, if((n-2*q)%3, A051168(n,q)+A180424(n,q)))/2}, [1..40]) \\ M. F. Hasler, Jun 05 2025

Formula

a(n) + A371991(n) = A000046(n).
a(n+1)/a(n) = 2 - 2/n + o(1/n). - M. F. Hasler, Jun 09 2025

Extensions

Offset changed to 1 and a(1) = 0 prefixed by M. F. Hasler, Jun 05 2025