A372000 a(n) = product of primes p such that floor(n/p) is odd.
1, 2, 6, 3, 15, 10, 70, 35, 105, 42, 462, 77, 1001, 286, 4290, 2145, 36465, 24310, 461890, 46189, 969969, 176358, 4056234, 676039, 3380195, 520030, 1560090, 111435, 3231615, 430882, 13357342, 6678671, 220396143, 25928958, 907513530, 151252255, 5596333435, 589087730, 22974421470, 2297442147
Offset: 1
Examples
a(1) = 1 since n = 1 is the empty product. a(2) = 2 since for n = 2, floor(n/p) = floor(2/2) = 1 is odd. a(3) = 6 since for n = 3 and p = 2, floor(3/2) = 1 is odd, and for p = 3, floor(3/3) = 1 is odd. Hence a(3) = 2*3 = 6. a(4) = 3 since for n = 4 and p = 2, floor(4/2) = 2 is even, but for p = 3, floor(4/3) = 1 is odd. Therefore, a(n) = 3. a(5) = 15 since for n = 5, though floor(5/2) = 2 is even, floor(5/3) and floor(5/5) are both odd. Therefore, a(n) = 3*5 = 15, etc. Table relating a(n) with b(n), diagramming prime factors with "x" that produce a(n), or powers of 2 with "x" that sum to b(n), where b(n) = A371906(n). Prime factor 1111 n b(n) 23571379 b(n) ---------------------------- 1 1 . 0 2 2 x 1 3 6 xx 3 4 3 .x 2 5 15 .xx 6 6 10 x.x 5 7 70 x.xx 13 8 35 ..xx 12 9 105 .xxx 14 10 42 xx.x 11 11 462 xx.xx 27 12 77 ...xx 24 13 1001 ...xxx 56 14 286 x...xx 49 15 4290 xxx.xx 55 16 2145 .xx.xx 54 17 36465 .xx.xxx 118 18 24310 x.x.xxx 117 19 461890 x.x.xxxx 245 20 46189 ....xxxx 240 ---------------------------- 01234567 Power of 2
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..3384
- Michael De Vlieger, Plot prime(i) | a(n) at (x,y) = (n,i) for n = 1..2048.
Programs
-
Mathematica
Table[Times @@ Select[Prime@ Range@ PrimePi[n], OddQ@ Quotient[n, #] &], {n, 40}] (* or *) Table[Product[Prime[i], {j, 1 + Floor[PrimePi[n]/2]}, {i, 1 + PrimePi[Floor[n/(2 j)]], PrimePi[Floor[n/(2 j - 1)]]}], {n, 40}]
-
PARI
a(n) = vecprod(select(x->((n\x) % 2), primes([1, n]))); \\ Michel Marcus, Apr 16 2024
-
SageMath
print([prod(p for p in prime_range(n + 1) if is_odd(n//p)) for n in range(1, 41)]) # Peter Luschny, Apr 16 2024
Formula
a(n) = Product_{k = 1..floor(pi(n)/2)+1} Product_{j = 1+floor(n/(2*k))..floor(n/(2*k-1))} prime(j), where pi(x) = A000720(n).
Comments