A372001 Array read by descending antidiagonals: A family of generalized Catalan numbers generated by a generalization of Deléham's Delta operator.
1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 14, 15, 5, 1, 1, 42, 105, 61, 9, 1, 1, 132, 945, 1385, 297, 17, 1, 1, 429, 10395, 50521, 24273, 1585, 33, 1, 1, 1430, 135135, 2702765, 3976209, 485729, 8865, 65, 1, 1, 4862, 2027025, 199360981, 1145032281, 372281761, 10401345, 50881, 129, 1, 1
Offset: 1
Examples
Array starts: [0] 1, 1, 2, 5, 14, 42, 132, ... [1] 1, 1, 3, 15, 105, 945, 10395, ... [2] 1, 1, 5, 61, 1385, 50521, 2702765, ... [3] 1, 1, 9, 297, 24273, 3976209, 1145032281, ... [4] 1, 1, 17, 1585, 485729, 372281761, 601378506737, ... [5] 1, 1, 33, 8865, 10401345, 38103228225, 352780110115425, ... [6] 1, 1, 65, 50881, 231455105, 4104215813761, 220579355255364545, ... . Seen as a triangle T(n, k) = A(k, n - k): [0] [ 1] [1] [ 1, 1] [2] [ 2, 1, 1] [3] [ 5, 3, 1, 1] [4] [ 14, 15, 5, 1, 1] [5] [ 42, 105, 61, 9, 1, 1] [6] [132, 945, 1385, 297, 17, 1, 1] [7] [429, 10395, 50521, 24273, 1585, 33, 1, 1]
Links
- Peter Luschny, First few triangles generated by A372001.
Crossrefs
Programs
-
SageMath
def GeneralizedDelehamDelta(F, dim, seq=True): # The algorithm. ring = PolynomialRing(ZZ, 'x') x = ring.gen() A = [sum(F[j](k) * x^j for j in range(len(F))) for k in range(dim)] C = [ring(0)] + [ring(1) for i in range(dim)] for k in range(dim): for n in range(k, 0, -1): C[n] = C[n-1] + C[n+1] * A[n-1] yield list(C[1])[-1] if seq else list(C[1]) def F(n): # Define the input functions. def p0(): return lambda n: pow(n, n^0) def p(k): return lambda n: pow(n + 1, k) return [p0()] + [p(k) for k in range(n + 1)] def A(n, dim): # Return only the main diagonal of the triangle. return [r for r in GeneralizedDelehamDelta(F(n), dim)] for n in range(7): print(A(n, 7)) def T(n, dim): # Return the regularized triangle. R = GeneralizedDelehamDelta(F(n), dim, False) return [[r[k] for k in range(0, len(r), n + 1)] for r in R] for n in range(0, 4): for row in T(n, 6): print(row)
Formula
A = DELTA([x -> (x + 1)^k : 0 <= k <= n]), i.e. here the input functions of the generalized Delta operator are the (shifted) power functions. The returned sequence is the main diagonal of the generated triangle.
Comments