cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A372023 Expansion of ( (1 + 3*x)/(1 - x) )^(1/2).

Original entry on oeis.org

1, 2, 0, 2, -2, 6, -12, 30, -72, 182, -464, 1206, -3170, 8426, -22596, 61074, -166194, 454950, -1251984, 3461574, -9611190, 26787378, -74916660, 210178458, -591347988, 1668172842, -4717282752, 13369522250, -37970114702, 108045430902, -308001125516
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(sqrt((1+3*x)/(1-x)))
    
  • PARI
    a(n) = sum(k=0, n, 4^k*binomial(1/2, k)*binomial(n-1, n-k));

Formula

a(n) = Sum_{k=0..n} 4^k * binomial(1/2,k) * binomial(n-1,n-k).
a(n) = (-1)^(n-1) * 2 * A005043(n-1) for n > 0.
a(n) ~ (-1)^(n+1) * 3^(n + 1/2) / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 16 2024

A372039 Expansion of ( 1 + 9*x*(1 + x) )^(1/3).

Original entry on oeis.org

1, 3, -6, 27, -144, 837, -5139, 32778, -215001, 1440747, -9818820, 67834665, -473945580, 3342743235, -23766448545, 170148578130, -1225477405485, 8873126329095, -64547392633740, 471509782020405, -3457212506428230, 25434642838306185, -187694935991201745
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec((1+9*x*(1+x))^(1/3))
    
  • PARI
    a(n) = sum(k=0, n, 9^k*binomial(1/3, k)*binomial(k, n-k));

Formula

a(n) = Sum_{k=0..n} 9^k * binomial(1/3,k) * binomial(k,n-k).
a(n) ~ (-1)^(n+1) * Gamma(1/3) * 5^(1/6) * 3^(n - 1/2) * phi^(2*n - 2/3) / (2*Pi*n^(4/3)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Apr 19 2024
Showing 1-2 of 2 results.