cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A372077 The sequence T_{3,2}(n,3).

Original entry on oeis.org

0, 0, 1, 3, 6, 13, 33, 84, 205, 495, 1206, 2953, 7221, 17628, 43033, 105099, 256710, 626965, 1531161, 3739428, 9132661, 22304343, 54472758, 133035889, 324906765, 793503660, 1937934241, 4732918803, 11558968326, 28229885533
Offset: 0

Views

Author

N. J. A. Sloane, Jun 17 2024

Keywords

References

  • Maribel Díaz Noguera [Maribel Del Carmen Díaz Noguera], Rigoberto Flores, Jose L. Ramirez, and Martha Romero Rojas, Catalan identities for generalized Fibonacci polynomials, Fib. Q., 62:2 (2024), 100-111. See Table 3.

Crossrefs

Cf. A372076.

Programs

  • Mathematica
    a[n_] := Sum[Sum[Sum[Binomial[n - i - j - 2, 3*k]*3^k, {k,0,n-i-j-2}], {j,0,n-i-2}], {i,0,n-1}]; Table[a[n], {n,0,29}] (* Detlef Meya, Jun 22 2024 *)

Formula

a(n) = Sum_{i=0..n-1} Sum_{j=0..n-i-2} Sum_{k=0..n-i-j-2} binomial(n - i - j - 2, 3*k)*3^k. a(n+1) = a(n) + A372076(n). - Detlef Meya, Jun 22 2024
G.f.: x^2/(1-3*x+3*x^2-4*x^3). - Georg Fischer, Apr 10 2025, from the reference, p. 108.

Extensions

a(11) and beyond from Detlef Meya, Jun 22 2024
Showing 1-1 of 1 results.