cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372106 A370972 terms composed of nine distinct digits which may repeat.

Original entry on oeis.org

1476395008, 116508327936, 505627938816, 640532803911, 1207460451879, 1429150367744, 1458956660623, 3292564845031, 3820372951296, 5056734498816, 6784304541696, 8090702381056, 9095331446784, 10757095489536, 10973607685048, 13505488366293, 14913065975808, 38203732951296
Offset: 1

Views

Author

Hans Havermann, Apr 18 2024

Keywords

Comments

Each factorization is necessarily composed of multipliers that use only the single missing digit.
The single missing digit cannot be 0, 1, 5, or 6. Terms missing 2, 3, 4, 7, and 8 appear within a(1)-a(6). 52612606387341 = 9^6 * 99 * 999999 is an example of a term missing 9. - Michael S. Branicky, Apr 18 2024
Some terms are equal to the sum of two distinct smaller terms:
a(741) = a(635) + a(673)
a(1202) = a(1081) + a(1144)
a(1273) = a(1110) + a(1169)
a(1493) = a(1335) + a(1374)
a(2753) = a(2478) + a(2528)
a(2793) = a(2512) + a(2583)
a(3581) = a(3234) + a(3317)
a(4199) = a(3808) + a(3921)
a(4803) = a(4510) + a(4607) = a(4557) + a(4568)
a(5756) = a(5256) + a(5362)
a(6083) = a(5718) + a(5847)
a(7262) = a(6761) + a(6779)
a(7331) = a(6786) + a(6904)
a(9204) = a(8723) + a(8886)
a(9364) = a(8858) + a(8982)
a(9453) = a(8972) + a(8983) - Hans Havermann, Apr 21 2024

Examples

			10973607685048 = 22222*22222*22222 is in the sequence because it has nine distinct digits and may be factored using only its missing digit.
		

Crossrefs

Programs

  • Python
    import heapq
    from itertools import islice
    def agen(): # generator of terms
        allowed = [2, 3, 4, 7, 8, 9]
        v, oldt, h, repunits, bigr = 1, 0, list((d, d) for d in allowed), [1], 1
        while True:
            v, d = heapq.heappop(h)
            if (v, d) != oldt:
                s = set(str(v))
                if len(s) == 9 and str(d) not in s:
                    yield v
                oldt = (v, d)
                while v > bigr:
                    bigr = 10*bigr + 1
                    repunits.append(bigr)
                    for c in allowed:
                        heapq.heappush(h, (bigr*c, c))
                for r in repunits:
                    heapq.heappush(h, (v*d*r, d))
    print(list(islice(agen(), 100))) # Michael S. Branicky, Apr 19 2024