A372118 Square array A(n, k) = ((k+2)^(n+2) - 2 * (k+1)^(n+2) + k^(n+2))/2 for k, n >= 0 read by ascending antidiagonals.
1, 3, 1, 7, 6, 1, 15, 25, 9, 1, 31, 90, 55, 12, 1, 63, 301, 285, 97, 15, 1, 127, 966, 1351, 660, 151, 18, 1, 255, 3025, 6069, 4081, 1275, 217, 21, 1, 511, 9330, 26335, 23772, 9751, 2190, 295, 24, 1, 1023, 28501, 111645, 133057, 70035, 19981, 3465, 385, 27, 1
Offset: 0
Examples
Square array A(n, k) starts: n\k : 0 1 2 3 4 5 6 7 ======================================================================= 0 : 1 1 1 1 1 1 1 1 1 : 3 6 9 12 15 18 21 24 2 : 7 25 55 97 151 217 295 385 3 : 15 90 285 660 1275 2190 3465 5160 4 : 31 301 1351 4081 9751 19981 36751 62401 5 : 63 966 6069 23772 70035 170898 365001 706104 6 : 127 3025 26335 133057 481951 1398097 3463615 7628545 7 : 255 9330 111645 724260 3216795 11075670 31794105 79669320 etc.
Links
- Paolo Xausa, Table of n, a(n) for n = 0..11324 (first 150 antidiagonals, flattened).
- Sela Fried, On an integer sequence related to Euler's formula for the Stirling numbers of the second kind, 2024.
Crossrefs
Programs
-
Mathematica
A372118[n_, k_] := ((k+2)^(n+2) - 2*(k+1)^(n+2) + k^(n+2))/2; Table[A372118[n-k, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jul 10 2024 *)
-
PARI
A(n, k) = ((k+2)^(n+2) - 2 * (k+1)^(n+2) + k^(n+2))/2
Formula
A(n, k) = (k+2) * A(n-1, k) + (k+1)^(n+1) - k^(n+1) for n > 0.
Conjectures:
(1) O.g.f. of column k is Prod_{i=k..k+2} 1 / (1 - i * t);
(2) E.g.f. of row n is exp(x) * (Sum_{k=0..n} binomial(k+2, 2) * A048993(n+2, k+2) * x^k);
(3) The LU decomposition of this array is given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L, where L is defined L(n, k) = A048993(n+2, k+2) * (k+2)! / 2!, i.e., A(n, k) = Sum_{i=0..k} L(n, i) * binomial(k, i).
The three conjectures are true. See comments. - Sela Fried, Jul 09 2024
Comments