A372122 Number of strict triquanimous partitions of 3n.
0, 0, 0, 0, 0, 1, 1, 4, 5, 13, 18, 36, 51, 93, 132, 229, 315, 516, 735, 1134, 1575, 2407, 3309, 4878, 6710, 9690, 13168, 18744, 25114, 35050, 47210, 64503, 85573, 116445, 153328, 205367, 269383, 356668, 464268, 610644, 788274, 1026330, 1321017, 1704309, 2176054
Offset: 0
Keywords
Examples
The partition (11,7,5,4,3,2,1) has qualifying set partitions {{11},{4,7},{1,2,3,5}} and {{11},{1,3,7},{2,4,5}} so is counted under a(11). The a(5) = 1 through a(9) = 13 partitions: (5,4,3,2,1) (6,5,4,2,1) (7,5,4,3,2) (8,6,5,3,2) (9,6,5,4,3) (7,6,4,3,1) (8,7,5,3,1) (9,7,5,4,2) (7,6,5,2,1) (8,7,6,2,1) (9,7,6,3,2) (6,5,4,3,2,1) (7,6,5,3,2,1) (9,8,5,4,1) (8,6,4,3,2,1) (9,8,6,3,1) (9,8,7,2,1) (7,6,5,4,3,2) (8,6,5,4,3,1) (8,7,5,4,2,1) (8,7,6,3,2,1) (9,6,5,4,2,1) (9,7,5,3,2,1) (9,8,4,3,2,1)
Crossrefs
A371783 counts k-quanimous partitions.
Programs
-
Mathematica
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]], {d,Rest[Divisors[n]]}]]; Table[Length[Select[IntegerPartitions[3n], UnsameQ@@#&&Select[facs[Times@@Prime/@#], Length[#]==3&&SameQ@@hwt/@#&]!={}&]],{n,0,10}]
Extensions
More terms from Jinyuan Wang, Mar 30 2025
Comments