cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A372137 G.f. A(x) satisfies A(x) = 1/( 1 - x * (1 + 9*x)^(1/3) * A(x)^2 ).

Original entry on oeis.org

1, 1, 6, 21, 181, 771, 7728, 34689, 385632, 1732971, 21041598, 92147697, 1217109951, 5099210686, 73380609681, 289623783084, 4564472639880, 16722146775195, 290985244619874, 974044248064611, 18925364858562927, 56848541164586820, 1251693011560795635
Offset: 0

Views

Author

Seiichi Manyama, Apr 20 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 9^(n-k)*binomial(3*k, k)*binomial(k/3, n-k)/(2*k+1));

Formula

a(n) = Sum_{k=0..n} 9^(n-k) * binomial(3*k,k) * binomial(k/3,n-k)/(2*k+1).

A372115 G.f. A(x) satisfies A(x) = 1/( 1 - x * (1 + 4*x)^(1/2) * A(x) ).

Original entry on oeis.org

1, 1, 4, 11, 48, 174, 784, 3219, 14816, 65082, 304656, 1393854, 6617184, 31086556, 149336672, 714494467, 3466785216, 16808037474, 82244904016, 402770823114, 1984987570016, 9797722907684, 48581811550112, 241324198117678, 1202874359046464, 6006605345531268
Offset: 0

Views

Author

Seiichi Manyama, Apr 20 2024

Keywords

Crossrefs

Cf. A372139.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(2/(1+sqrt(1-4*x*sqrt(1+4*x))))
    
  • PARI
    a(n) = sum(k=0, n, 4^(n-k)*binomial(2*k, k)*binomial(k/2, n-k)/(k+1));

Formula

G.f.: A(x) = 2/(1 + sqrt(1-4*x*sqrt(1+4*x))).
a(n) = Sum_{k=0..n} 4^(n-k) * binomial(2*k,k) * binomial(k/2,n-k)/(k+1).
D-finite with recurrence n*(n-1)*(n+1)*a(n) +2*n*(n-1)*(10*n-23)*a(n-1) +12*(n-1)*(11*n^2-64*n+83)*a(n-2) +24*(4*n^3-90*n^2+352*n-369)*a(n-3) +48*(-64*n^3+528*n^2-1433*n+1290)*a(n-4) +64*(-268*n^3+3090*n^2-11882*n+15255)*a(n-5) +192*(-208*n^3+2928*n^2-13705*n+21345)*a(n-6) -1152*(4*n-25)*(4*n-19)*(2*n-11)*a(n-7)=0. - R. J. Mathar, Apr 24 2024
Showing 1-2 of 2 results.