A372141 Primes p that are palindromic in some prime base q, where q < p.
3, 5, 7, 13, 17, 23, 31, 41, 67, 71, 73, 83, 107, 109, 127, 151, 157, 173, 199, 233, 257, 271, 277, 307, 313, 353, 379, 409, 419, 421, 431, 443, 457, 499, 521, 523, 571, 587, 599, 601, 631, 643, 647, 653, 691, 701, 709, 719, 733, 743, 757, 787, 797, 809, 823, 829, 857, 863, 887
Offset: 1
Examples
11 is not in this sequence as its representation in base 2 is 1011, in base 3 is 102, in base 5 is 21, in base 7 is 14, none of which are palindromic. 1483 is in this sequence as its representation in base 37 is 131, which is palindromic.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..11371 (terms 1..1000 from Tadayoshi Kamegai)
Programs
-
Mathematica
a={}; For[i=1, i<=155, i++, flag=0; For[j=1, Prime[j] < Prime[i] && flag==0, j++, If[PalindromeQ[IntegerDigits[Prime[i], Prime[j]]], flag=1; AppendTo[a, Prime[i]]]]]; a (* Stefano Spezia, Apr 22 2024 *)
-
Python
from sympy import sieve from sympy.ntheory import digits from itertools import islice def ispal(v): return v == v[::-1] def agen(): yield from (p for p in sieve if any(ispal(digits(p, q)[1:]) for q in sieve.primerange(1, p))) print(list(islice(agen(), 60))) # Michael S. Branicky, Apr 20 2024
Comments