cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A372157 E.g.f. A(x) satisfies A(x) = exp( 3 * x * (1 + x * A(x)^(1/3)) ).

Original entry on oeis.org

1, 3, 15, 99, 837, 8583, 104229, 1463031, 23362089, 418489227, 8318989089, 181823016147, 4335947796717, 112073459278095, 3122026815194205, 93267116190237807, 2974988801559127761, 100932108044810678547, 3629658464478098931897, 137928467585817206673291
Offset: 0

Views

Author

Seiichi Manyama, Apr 20 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(3*x-3*lambertw(-x^2*exp(x)))))
    
  • PARI
    a(n, r=3, s=1, t=0, u=1) = r*n!*sum(k=0, n, (t*k+u*(n-k)+r)^(k-1)*binomial(s*k, n-k)/k!);

Formula

E.g.f.: A(x) = exp( 3*x - 3*LambertW(-x^2 * exp(x)) ).
If e.g.f. satisfies A(x) = exp( r*x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s ), then a(n) = r * n! * Sum_{k=0..n} (t*k+u*(n-k)+r)^(k-1) * binomial(s*k,n-k)/k!.

A372234 E.g.f. A(x) satisfies A(x) = exp( 2 * x * (1 + x^2 * A(x)^(1/2)) ).

Original entry on oeis.org

1, 2, 4, 20, 160, 1112, 9424, 114788, 1453792, 19242224, 309179104, 5533486268, 102733943536, 2105041949480, 47732237414320, 1139969559931028, 28924667996076736, 792458458301707232, 22984740550326524608, 699915806697250558316
Offset: 0

Views

Author

Seiichi Manyama, Apr 23 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(2*x-2*lambertw(-x^3*exp(x)))))
    
  • PARI
    a(n) = 2*n!*sum(k=0, n\3, (k+2)^(n-2*k-1)/(k!*(n-3*k)!));

Formula

E.g.f.: A(x) = exp( 2*x - 2*LambertW(-x^3 * exp(x)) ).
a(n) = 2 * n! * Sum_{k=0..floor(n/3)} (k+2)^(n-2*k-1) / (k! * (n-3*k)!).
a(n) ~ 2*sqrt(1 + LambertW(exp(-1/3)/3)) * n^(n-1) / (3^(n + 11/2) * exp(n) * LambertW(exp(-1/3)/3)^(n+6)). - Vaclav Kotesovec, Jun 01 2024
Showing 1-2 of 2 results.