cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372168 Number of triangle-free simple labeled graphs covering n vertices.

Original entry on oeis.org

1, 0, 1, 3, 22, 237, 3961, 99900, 3757153, 208571691, 16945953790, 1999844518737, 340422874696873, 83041703920313712, 28850117307732482737, 14191512425207950473867, 9829313296102303971441502
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2024

Keywords

Comments

The unlabeled version is A372169.

Examples

			The a(4) = 22 graphs are:
  12-34
  13-24
  14-23
  12-13-14
  12-13-24
  12-13-34
  12-14-23
  12-14-34
  12-23-24
  12-23-34
  12-24-34
  13-14-23
  13-14-24
  13-23-24
  13-23-34
  13-24-34
  14-23-24
  14-23-34
  14-24-34
  12-13-24-34
  12-14-23-34
  13-14-23-24
		

Crossrefs

Dominated by A006129, unlabeled A002494.
For all cycles (not just triangles) we have A105784, unlabeled A144958.
Covering case of A213434 (column k = 0 of A372170, unlabeled A263340).
The connected case is A345218, unlabeled A024607.
Column k = 0 of A372167, unlabeled A372173.
The unlabeled version is A372169.
For a unique triangle we have A372171, non-covering A372172.
A000088 counts unlabeled graphs, labeled A006125.
A001858 counts acyclic graphs, unlabeled A005195.
A054548 counts covering graphs by number of edges, unlabeled A370167.

Programs

  • Mathematica
    cys[y_]:=Select[Subsets[Union@@y,{3}],MemberQ[y,{#[[1]],#[[2]]}] && MemberQ[y,{#[[1]],#[[3]]}] && MemberQ[y,{#[[2]],#[[3]]}]&];
    Table[Length[Select[Subsets[Subsets[Range[n], {2}]],Union@@#==Range[n]&&Length[cys[#]]==0&]],{n,0,5}]

Formula

Binomial transform is A213434.