A372170 Irregular triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and exactly k triangles, 0 <= k <= binomial(n,3).
1, 1, 2, 7, 1, 41, 16, 6, 0, 1, 388, 290, 195, 70, 40, 30, 0, 10, 0, 0, 1, 5789, 6980, 6910, 4560, 3030, 2292, 1230, 780, 600, 180, 236, 60, 45, 60, 0, 0, 15, 0, 0, 0, 1, 133501, 235270, 313705, 302505, 260890, 222509, 174615, 126780, 102970, 67165, 50134, 37485, 20370, 17990, 11445, 6552, 4515, 3570, 1680, 1785, 154, 735, 455, 140, 0, 105, 105, 0, 0, 0, 21, 0, 0, 0, 0, 1
Offset: 0
Examples
Triangle begins: 1 1 2 7 1 41 16 6 0 1 388 290 195 70 40 30 0 10 0 0 1 ... For example, the T(4,1) = 16 graphs are: 12-13-23 12-14-24 13-14-34 23-24-34 12-13-14-23 12-13-14-24 12-13-14-34 12-13-23-24 12-13-23-34 12-14-23-24 12-14-24-34 12-23-24-34 13-14-23-34 13-14-24-34 13-23-24-34 14-23-24-34
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..340 (rows 0..10)
Programs
-
Mathematica
cys[y_]:=Select[Subsets[Union@@y,{3}],MemberQ[y,{#[[1]],#[[2]]}]&&MemberQ[y,{#[[1]],#[[3]]}]&&MemberQ[y,{#[[2]],#[[3]]}]&]; Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[cys[#]]==k&]],{n,0,5},{k,0,Binomial[n,3]}]
Formula
Binomial transform of columns of A372167.
Extensions
a(42) onwards from Andrew Howroyd, Dec 29 2024