cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372170 Irregular triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and exactly k triangles, 0 <= k <= binomial(n,3).

Original entry on oeis.org

1, 1, 2, 7, 1, 41, 16, 6, 0, 1, 388, 290, 195, 70, 40, 30, 0, 10, 0, 0, 1, 5789, 6980, 6910, 4560, 3030, 2292, 1230, 780, 600, 180, 236, 60, 45, 60, 0, 0, 15, 0, 0, 0, 1, 133501, 235270, 313705, 302505, 260890, 222509, 174615, 126780, 102970, 67165, 50134, 37485, 20370, 17990, 11445, 6552, 4515, 3570, 1680, 1785, 154, 735, 455, 140, 0, 105, 105, 0, 0, 0, 21, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2024

Keywords

Examples

			Triangle begins:
     1
     1
     2
     7    1
    41   16    6    0    1
   388  290  195   70   40   30    0   10    0    0    1
   ...
For example, the T(4,1) = 16 graphs are:
  12-13-23
  12-14-24
  13-14-34
  23-24-34
  12-13-14-23
  12-13-14-24
  12-13-14-34
  12-13-23-24
  12-13-23-34
  12-14-23-24
  12-14-24-34
  12-23-24-34
  13-14-23-34
  13-14-24-34
  13-23-24-34
  14-23-24-34
		

Crossrefs

Row sums are A006125, covering A006129.
Row lengths are A050407.
Counting edges instead of triangles gives A084546, covering A054548.
Column k = 0 is A213434, covering A372168.
The unlabeled version is A263340.
The covering case is A372167, unlabeled A372173.
Column k = 1 is A372172, covering A372171.
For all cycles (not just triangles) we have A372176, covering A372175.
A001858 counts acyclic graphs, unlabeled A005195.
A367867 counts non-choosable graphs, covering A367868.
A372193 counts unicyclic graphs, unlabeled A236570, covering A372191.

Programs

  • Mathematica
    cys[y_]:=Select[Subsets[Union@@y,{3}],MemberQ[y,{#[[1]],#[[2]]}]&&MemberQ[y,{#[[1]],#[[3]]}]&&MemberQ[y,{#[[2]],#[[3]]}]&];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[cys[#]]==k&]],{n,0,5},{k,0,Binomial[n,3]}]

Formula

Binomial transform of columns of A372167.

Extensions

a(42) onwards from Andrew Howroyd, Dec 29 2024