A372175 Irregular triangle read by rows where T(n,k) is the number of labeled simple graphs covering n vertices with exactly 2k directed cycles of length > 2.
1, 0, 1, 3, 1, 19, 15, 0, 6, 0, 0, 0, 1, 155, 232, 15, 190, 0, 0, 70, 50, 0, 0, 0, 0, 30, 15, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
Triangle begins (zeros shown as dots): 1 . 1 3 1 19 15 . 6 ... 1 155 232 15 190 .. 70 50 .... 30 15 .......... 10 .............. 1 Row n = 4 counts the following graphs: 12,34 12,13,14,23 . 12,13,14,23,24 . . . 12,13,14,23,24,34 13,24 12,13,14,24 12,13,14,23,34 14,23 12,13,14,34 12,13,14,24,34 12,13,14 12,13,23,24 12,13,23,24,34 12,13,24 12,13,23,34 12,14,23,24,34 12,13,34 12,13,24,34 13,14,23,24,34 12,14,23 12,14,23,24 12,14,34 12,14,23,34 12,23,24 12,14,24,34 12,23,34 12,23,24,34 12,24,34 13,14,23,24 13,14,23 13,14,23,34 13,14,24 13,14,24,34 13,23,24 13,23,24,34 13,23,34 14,23,24,34 13,24,34 14,23,24 14,23,34 14,24,34
Crossrefs
Row lengths are A002807 + 1.
Column k = 0 is A105784 (for triangles A372168, non-covering A213434), unlabeled A144958 (for triangles A372169).
Counting triangles instead of cycles gives A372167 (non-covering A372170), unlabeled A372173 (non-covering A263340).
The non-covering version is A372176.
Programs
-
Mathematica
cycles[g_]:=Join@@Table[Select[Join@@Permutations /@ Subsets[Union@@g,{k}],Min@@#==First[#]&&And@@Table[MemberQ[Sort/@g,Sort[{#[[i]], #[[If[i==k,1,i+1]]]}]],{i,k}]&],{k,3,Length[g]}]; Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Union@@#==Range[n]&&Length[cycles[#]]==2k&]], {n,0,5},{k,0,Length[cycles[Subsets[Range[n],{2}]]]/2}]
Comments