A263340 Triangle read by rows: T(n,k) is the number of graphs with n vertices containing k triangles.
1, 1, 2, 3, 1, 7, 2, 1, 0, 1, 14, 7, 5, 2, 3, 1, 0, 1, 0, 0, 1, 38, 23, 28, 14, 18, 9, 7, 5, 4, 1, 4, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 107, 102, 141, 117, 123, 92, 80, 63, 49, 35, 35, 23, 15, 17, 10, 4, 9, 5, 2, 3, 3, 2, 2, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1
Offset: 0
Examples
Triangle begins: 1; 1; 2; 3,1; 7,2,1,0,1; 14,7,5,2,3,1,0,1,0,0,1; 38,23,28,14,18,9,7,5,4,1,4,1,1,1,0,0,1,0,0,0,1; ...
Links
- Pontus von Brömssen, Rows n = 0..10, flattened
- FindStat - Combinatorial Statistic Finder, The number of triangles of a graph.
- Gus Wiseman, The graphs counted under row n = 5.
Crossrefs
Row lengths are A050407.
Programs
-
Mathematica
Table[Table[Count[Table[Tr[MatrixPower[AdjacencyMatrix[GraphData[{n, i}]], 3]]/6, {i, 1, NumberOfGraphs[n]}], k], {k, 0, Binomial[n, 3]}], {n, 1, 7}] (* Geoffrey Critzer, Apr 13 2017 *)
Extensions
Row 7 from Geoffrey Critzer, Apr 13 2017
T(0,0)=1 prepended by Alois P. Heinz, Apr 13 2017
Comments