A144958 Number of unlabeled acyclic graphs covering n vertices.
1, 0, 1, 1, 3, 4, 10, 17, 39, 77, 176, 381, 891, 2057, 4941, 11915, 29391, 73058, 184236, 468330, 1202349, 3108760, 8097518, 21218776, 55925742, 148146312, 394300662, 1053929982, 2828250002, 7617271738, 20584886435, 55802753243
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Apr 29 2024: (Start) Edge-sets of non-isomorphic representatives of the a(0) = 1 through a(5) = 4 forests: {} . {12} {13,23} {12,34} {12,35,45} {13,24,34} {13,24,35,45} {14,24,34} {14,25,35,45} {15,25,35,45} (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}]]]; cyc[y_]:=Select[Join@@Table[Select[Join@@Permutations/@Subsets[Union@@y,{k}],And@@Table[MemberQ[Sort/@y,Sort[{#[[i]],#[[If[i==k,1,i+1]]]}]],{i,k}]&],{k,3,Length[y]}],Min@@#==First[#]&]; Table[Length[Union[Union[brute/@Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[cyc[#]]==0&]]]],{n,0,5}] (* Gus Wiseman, Apr 29 2024 *)
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)} seq(n)={my(t=TreeGf(n), v=EulerT(Vec(t - t^2/2 + subst(t,x,x^2)/2))); concat([1,0], vector(#v-1, i, v[i+1]-v[i]))} \\ Andrew Howroyd, Aug 01 2024
Extensions
Name changed and 1 prepended by Gus Wiseman, Apr 29 2024.
Comments