A372187 Numbers m such that 72*m + 1, 576*m + 1, 648*m + 1, 1296*m + 1, and 2592*m + 1 are all primes.
95, 890, 3635, 8150, 9850, 12740, 13805, 18715, 22590, 23591, 32526, 36395, 38571, 49016, 49456, 57551, 58296, 61275, 80756, 81050, 84980, 99940, 104346, 115361, 116761, 121055, 122550, 129320, 140331, 142625, 149431, 153505, 159306, 159730, 169625, 173485, 181661
Offset: 1
Examples
95 is a term since 72*95 + 1 = 6841, 576*95 + 1 = 54721, 648*95 + 1 = 61561, 1296*95 + 1 = 123121, and 2592*95 + 1 = 246241 are all primes.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Ken Nakamula, Hirofumi Tsumura, and Hiroaki Komai, New polynomials producing absolute pseudoprimes with any number of prime factors, arXiv:math/0702410 [math.NT], 2007.
Crossrefs
Programs
-
Mathematica
q[n_] := AllTrue[{72, 576, 648, 1296, 2592}, PrimeQ[#*n + 1] &]; Select[Range[200000], q]
-
PARI
is(n) = isprime(72*n + 1) && isprime(576*n + 1) && isprime(648*n + 1) && isprime(1296*n + 1) && isprime(2592*n + 1);
Comments