A372193 Number of labeled simple graphs on n vertices with a unique cycle of length > 2.
0, 0, 0, 1, 19, 317, 5582, 108244, 2331108, 55636986, 1463717784, 42182876763, 1323539651164, 44955519539963, 1644461582317560, 64481138409909506, 2698923588248208224, 120133276796015812548, 5667351458582453925696, 282496750694780020437765, 14837506263979393796687088
Offset: 0
Keywords
Examples
The a(4) = 19 graphs: 12,13,23 12,14,24 13,14,34 23,24,34 12,13,14,23 12,13,14,24 12,13,14,34 12,13,23,24 12,13,23,34 12,13,24,34 12,14,23,24 12,14,23,34 12,14,24,34 12,23,24,34 13,14,23,24 13,14,23,34 13,14,24,34 13,23,24,34 14,23,24,34
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Mathematica
cyc[y_]:=Select[Join@@Table[Select[Join@@Permutations /@ Subsets[Union@@y,{k}],And @@ Table[MemberQ[Sort/@y,Sort[{#[[i]],#[[If[i==k,1,i+1]]]}]],{i,k}]&], {k,3,Length[y]}],Min@@#==First[#]&]; Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Length[cyc[#]]==2&]],{n,0,5}]
-
PARI
seq(n)={my(w=lambertw(-x+O(x*x^n))); Vec(serlaplace(exp(-w-w^2/2)*(-log(1+w)/2 + w/2 - w^2/4)), -n-1)} \\ Andrew Howroyd, Jul 31 2024
Formula
E.g.f.: B(x)*C(x) where B(x) is the e.g.f. of A057500 and C(x) is the e.g.f. of A001858. - Andrew Howroyd, Jul 31 2024
Extensions
a(7) onwards from Andrew Howroyd, Jul 31 2024
Comments