A372195 Number of labeled simple graphs covering n vertices with a unique undirected cycle of length > 2.
0, 0, 0, 1, 15, 232, 3945, 75197, 1604974, 38122542, 1000354710, 28790664534, 902783451933, 30658102047787, 1121532291098765, 43985781899812395, 1841621373756094796, 82002075703514947236, 3869941339069299799884, 192976569550677042208068, 10139553075163838030949495
Offset: 0
Keywords
Examples
The a(4) = 15 graphs: 12,13,14,23 12,13,14,24 12,13,14,34 12,13,23,24 12,13,23,34 12,13,24,34 12,14,23,24 12,14,23,34 12,14,24,34 12,23,24,34 13,14,23,24 13,14,23,34 13,14,24,34 13,23,24,34 14,23,24,34
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
For no cycles we have A105784 (for triangles A372168, non-covering A213434), unlabeled A144958 (for triangles A372169).
Counting triangles instead of cycles gives A372171 (non-covering A372172), unlabeled A372174 (non-covering A372194).
A002807 counts cycles in a complete graph.
Programs
-
Mathematica
cyc[y_]:=Select[Join@@Table[Select[Join@@Permutations/@Subsets[Union@@y,{k}],And@@Table[MemberQ[Sort/@y,Sort[{#[[i]],#[[If[i==k,1,i+1]]]}]],{i,k}]&],{k,3,Length[y]}],Min@@#==First[#]&]; Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[cyc[#]]==2&]],{n,0,5}]
-
PARI
seq(n)={my(w=lambertw(-x+O(x*x^n))); Vec(serlaplace(exp(-w-w^2/2-x)*(-log(1+w)/2 + w/2 - w^2/4)), -n-1)} \\ Andrew Howroyd, Jul 31 2024
Formula
Inverse binomial transform of A372193. - Andrew Howroyd, Jul 31 2024
Extensions
a(7) onwards from Andrew Howroyd, Jul 31 2024
Comments