A372197 Primes that can be represented as k*R(k) + 1, where R(k) is the reverse of k.
2, 5, 11, 17, 37, 41, 101, 251, 401, 491, 641, 811, 977, 1009, 1301, 1459, 1601, 1613, 2269, 2297, 2521, 4001, 4357, 4931, 5741, 5849, 8101, 9001, 10891, 12071, 12101, 13001, 14621, 16001, 17291, 19441, 22961, 23633, 26681, 27011, 30493, 31541, 34781, 38153, 42283, 42751, 46061, 58481, 66457
Offset: 1
Examples
a(1) = 2 = 1 * 1 + 1. a(3) = 11 = 10 * 1 + 1. a(13) = 977 = 16 * 61 + 1.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 6: # for terms <= 10^N where N is even S:= {}: for x from 1 to 10^(N/2)-1 do if x mod 10 = 0 then next fi; r:= rev(x); if r < x then next fi; v:= x*r; for i from 0 do w:= 10^i*v+1; if w > 10^N then break fi; if isprime(w) then S:= S union {w} fi; od od: sort(convert(S,list));
Comments