A372211 a(n) = [x^n] f(x)^n, where f(x) = (1 - x^5)^5/((1 - x^2)^2 * (1 - x^3)^3).
1, 0, 4, 9, 36, 125, 535, 1715, 7716, 26739, 111379, 419265, 1683351, 6518499, 26081381, 102089384, 408200740, 1612289384, 6441151477, 25602561864, 102352339411, 408402686750, 1635036583239, 6541552959219, 26227281703575, 105151396500125, 422159487904405, 1695369986497917
Offset: 0
Examples
Supercongruences: a(11) = 419265 = (3^2)*5*7*11^3 == 0 (mod 11^3). a(23) = 6541552959219 = (3^2)*(23^3)*59738573 == 0 (mod 23^3). a(2*7) - a(2) = 26081381 - 4 = (7^3)*76039 == 0 (mod 7^3).
References
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
Programs
-
Maple
f(x) := (1 - x^5)^5/((1 - x^2)^2*(1 - x^3)^3): seq(coeftayl(f(x)^n, x = 0, n), n = 0..27);
Formula
The o.g.f. A(x) = 1 + 4*x^2 + 9*x^3 + 36*x^4 + ... is the diagonal of the bivariate rational function 1/(1 - t*f(x)) and hence is an algebraic function over the field of rational functions Q(x) by Stanley, Theorem 6.33, p. 197.
Comments