A372212 a(n) = [x^n] f(x)^n, where f(x) = (1 - x^7)^7/((1 - x^2)^2 * (1 - x^5)^5).
1, 0, 4, 0, 36, 25, 364, 441, 3876, 6561, 43779, 91839, 513900, 1245699, 6201199, 16645750, 76379940, 220760742, 955328863, 2916666288, 12090544611, 38466060066, 154437142545, 506976137710, 1987270052460, 6681958793775, 25724578443321, 88104794553729
Offset: 0
Examples
Supercongruences: a(11) = 91839 = 3*(11^3)*23 == 0 (mod 11^3). a(2*11) - a(2) = 154437142545 - 4 = (11^3)*2671*43441 == 0 (mod 11^3).
References
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
Programs
-
Maple
f(x) := (1 - x^7)^7/((1 - x^2)^2*(1 - x^5)^5): seq(coeftayl(f(x)^n, x = 0, n), n = 0..27);
Formula
The o.g.f. A(x) = 1 + 4*x^2 + 36*x^4 + 25*x^5 + ... is the diagonal of the bivariate rational function 1/(1 - t*f(x)) and hence is an algebraic function over the field of rational functions Q(x) by Stanley, Theorem 6.33, p. 197.
Comments