A372213 a(n) = [x^n] f(x)^n, where f(x) = (1 - x^7)^7/((1 - x^3)^3 * (1 - x^4)^4).
1, 0, 0, 9, 16, 0, 171, 539, 528, 3654, 16500, 29282, 101851, 483340, 1215445, 3416634, 14564880, 44585475, 124007202, 462804166, 1555048516, 4547401595, 15500748802, 53459717443, 164998563675, 538593687500, 1845162146828, 5920282930815, 19091999953749, 64389113743812, 211137579083046
Offset: 0
Examples
Supercongruences: a(11) = 29282 = 2*(11^4) == 0 (mod 11^4). a(13) = 483340 = (2^2)*5*11*(13^3) == 0 (mod 13^3). a(2*11) = 15500748802 = 2*7*(11^4)*47*1609 == 0 (mod 11^4).
References
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
Programs
-
Maple
f(x) := (1 - x^7)^7/((1 - x^3)^3*(1 - x^4)^4): seq(coeftayl(f(x)^n, x = 0, n), n = 0..30);
Formula
The o.g.f. A(x) = 1 + 9*x^3 + 16*x^4 + 171*x^6 + ... is the diagonal of the bivariate rational function 1/(1 - t*f(x)) and hence is an algebraic function over the field of rational functions Q(x) by Stanley, Theorem 6.33, p. 197.
Extensions
a(28) corrected by and more terms from Georg Fischer, Jul 28 2025
Comments