cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372220 Four-column table read by rows: row n is the unique primitive Pythagorean quadruple (a,b,c,d) such that a > (a + b + c - d)/2 = 2n(n + 1) and b = c.

Original entry on oeis.org

17, 20, 20, 33, 31, 42, 42, 67, 49, 72, 72, 113, 71, 110, 110, 171, 97, 156, 156, 241, 127, 210, 210, 323, 161, 272, 272, 417, 199, 342, 342, 523, 241, 420, 420, 641, 287, 506, 506, 771, 337, 600, 600, 913, 391, 702, 702, 1067, 449, 812, 812, 1233, 511, 930, 930, 1411, 577, 1056, 1056, 1601
Offset: 2

Views

Author

Keywords

Comments

A Pythagorean quadruple is a quadruple (a,b,c,d) of positive integers such that a^2 + b^2 + c^2 = d^2 with a <= b <= c. Its inradius is (a+b+c-d)/2, which is a positive integer.

Examples

			Table begins:
  n=2:   17,   20,    20,    33;
  n=3:   31,   42,    42,    67;
  n=4:   49,   72,    72,   113;
  n=5:   71,  110,   110,   171;
  n=6:   97,  156,   156,   241;
		

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.

Crossrefs

Cf. A372219, A056220 (first column), A002943 (second column), A080859 (fourth column).

Programs

  • Mathematica
    cuaternas={};Do[cuaternas=Join[cuaternas,{2n^2+4n+1,4n^2+2n,4n^2+2n,6n^2+4n+1}],{n,2,35}];cuaternas

Formula

Row n = (a, b, c, d) = (2n^2 + 4n + 1, 4n^2 + 2n, 4n^2 + 2n, 6n^2 + 4n + 1).