A372219 Four-column table read by rows: row n is the unique primitive Pythagorean quadruple (a,b,c,d) such that a < (a + b + c - d)/2 = 2n(n + 1) and b = c.
1, 12, 12, 17, 7, 30, 30, 43, 17, 56, 56, 81, 31, 90, 90, 131, 49, 132, 132, 193, 71, 182, 182, 267, 97, 240, 240, 353, 127, 306, 306, 451, 161, 380, 380, 561, 199, 462, 462, 683, 241, 552, 552, 817, 287, 650, 650, 963, 337, 756, 756, 1121, 391, 870, 870, 1291, 449, 992, 992, 1473
Offset: 2
Examples
Table begins: n=1: 1, 12, 12, 17; n=2: 7, 30, 30, 43; n=3: 17, 56, 56, 81; n=4: 31, 90, 90, 131; n=5: 49, 132, 132, 193;
References
- Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.
Links
- Miguel-Ángel Pérez García-Ortega, Teorema 10.12
Programs
-
Mathematica
cuaternas={};Do[cuaternas=Join[cuaternas,{2n^2-1,4n^2+6n+2,4n^2+6n+2,6n^2+8n+3}],{n,1,35}];cuaternas
Formula
Row n = (a, b, c, d) = (2n^2 - 1, 4n^2 + 6n + 2, 4n^2 + 6n + 2, 6n^2 + 8n + 3).
Comments