cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372227 a(n) = Sum_{k=1..n} sigma( (n/gcd(k,n))^2 ).

Original entry on oeis.org

1, 8, 27, 70, 125, 216, 343, 578, 753, 1000, 1331, 1890, 2197, 2744, 3375, 4666, 4913, 6024, 6859, 8750, 9261, 10648, 12167, 15606, 15745, 17576, 20427, 24010, 24389, 27000, 29791, 37418, 35937, 39304, 42875, 52710, 50653, 54872, 59319, 72250, 68921, 74088
Offset: 1

Views

Author

Seiichi Manyama, May 19 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#] * DivisorSigma[1, #^2] &]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*sigma(d^2));

Formula

If k is squarefree (cf. A005117) then a(k) = k^3.
a(n) = Sum_{d|n} phi(d) * sigma(d^2).
From Amiram Eldar, May 20 2024: (Start)
Multiplicative with a(p^e) = (p^(3*e+3)-1)/(p^3-1) - (p^e-1)/(p-1).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = (Pi^2/15) * zeta(3) * Product_{p prime} (1 + 1/p^2 - 1/p^3) = 1.03291869994469216597... . (End)