A372254 Number A(n,k) of acyclic orientations of the complete tripartite graph K_{n,n,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 2, 1, 6, 14, 1, 18, 78, 230, 1, 54, 426, 1902, 6902, 1, 162, 2286, 15402, 76110, 329462, 1, 486, 12090, 122190, 822954, 4553166, 22934774, 1, 1458, 63198, 951546, 8724078, 61796298, 381523758, 2193664790, 1, 4374, 327306, 7290942, 90768378, 823457454, 6241779786, 42700751022, 276054834902
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, ... 2, 6, 18, 54, 162, 486, ... 14, 78, 426, 2286, 12090, 63198, ... 230, 1902, 15402, 122190, 951546, 7290942, ... 6902, 76110, 822954, 8724078, 90768378, 928340190, ... 329462, 4553166, 61796298, 823457454, 10779805722, 138779942046, ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Don Knuth, Parades and poly-Bernoulli bijections, Mar 31 2024. See (19.2).
- Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
- Wikipedia, Acyclic orientation
- Wikipedia, Multipartite graph
Crossrefs
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add( expand(x*g(n-j))*binomial(n-1, j-1), j=1..n)) end: A:= proc(n, k) option remember; local q, l, b; q, l, b:= -1, [n$2, k], proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)* (q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j])) end; abs(b(0, 3)) end: seq(seq(A(n, d-n), n=0..d), d=0..9);
-
Mathematica
g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n-j]]*Binomial[n-1, j-1], {j, 1, n}]]; A[n_, k_] := A[n, k] = Module[{q, l, b}, {q, l} = {-1, {n, n, k}}; b[n0_, j_] := b[n0, j] = If[j == 1, Product[q-i, {i, 0, n0-1}]*(q-n0)^l[[1]], Sum[b[n0 + m, j-1]*Coefficient[g[l[[j]]], x, m], {m, 0, l[[j]]}]]; Abs[b[0, 3]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 9}] // Flatten (* Jean-François Alcover, Apr 25 2024, after Alois P. Heinz *)
Comments