A372264
a(n) = n! - n^2 + 2n - 1.
Original entry on oeis.org
1, 1, 2, 15, 104, 695, 5004, 40271, 362816, 3628719, 39916700, 479001479, 6227020656, 87178291031, 1307674367804, 20922789887775, 355687428095744, 6402373705727711, 121645100408831676, 2432902008176639639, 51090942171709439600, 1124000727777607679559, 25852016738884976639516
Offset: 1
- Aria Chen, Tyler Cummins, Rishi De Francesco, Jate Greene, Tanya Khovanova, Alexander Meng, Tanish Parida, Anirudh Pulugurtha, Anand Swaroop, and Samuel Tsui, Card Tricks and Information, arXiv:2405.21007 [math.HO], 2024. See p. 19.
- Michael Kleber and Ravi Vakil, The best card trick, The Mathematical Intelligencer 24 (2002), 9-11.
-
Table[(n! - n^2 + 2 n - 1), {n, 1, 25}]
-
from math import factorial
def A372264(n): return factorial(n)-(n-1)**2 # Chai Wah Wu, May 02 2024
A372265
a(n) = floor((2*n - 3 + sqrt(1 + 4*n!))/2).
Original entry on oeis.org
0, 2, 4, 7, 14, 31, 76, 207, 609, 1913, 6327, 21896, 78922, 295272, 1143549, 4574158, 18859692, 80014850, 348776594, 1559776287, 7147792837, 33526120102, 160785623566, 787685471345, 3938427356638, 20082117944270, 104349745809099, 552166953567254, 2973510046012938, 16286585271694984
Offset: 1
For n=3, the equation on the deck size becomes the following: d-1 choose 2 can't exceed 3. Thus, a(3) = 4.
- Aria Chen, Tyler Cummins, Rishi De Francesco, Jate Greene, Tanya Khovanova, Alexander Meng, Tanish Parida, Anirudh Pulugurtha, Anand Swaroop, and Samuel Tsui, Card Tricks and Information, arXiv:2405.21007 [math.HO], 2024. See p. 21.
- Michael Kleber and Ravi Vakil, The best card trick, The Mathematical Intelligencer 24 (2002), 9-11.
A372266
a(n) = floor((2*n - 3 + sqrt(1 + 8*(n - 2)!))/2).
Original entry on oeis.org
2, 3, 4, 7, 11, 21, 44, 107, 292, 861, 2704, 8946, 30964, 111611, 417574, 1617219, 6468832, 26671628, 113158082, 493244584, 2205856773, 10108505566, 47413093736, 227385209476, 1113955476453, 5569777382171, 28400403557955, 147572825753404, 780881994429038
Offset: 2
For n=3, the constraint on the deck size becomes: binomial(d-1, 2) can't exceed 1!=1. Thus a(3) = 3.
- Aria Chen, Tyler Cummins, Rishi De Francesco, Jate Greene, Tanya Khovanova, Alexander Meng, Tanish Parida, Anirudh Pulugurtha, Anand Swaroop, and Samuel Tsui, Card Tricks and Information, arXiv:2405.21007 [math.HO], 2024. See p. 20.
- Michael Kleber, The best card trick, The Mathematical Intelligencer 24 (2002), 9-11.
Showing 1-3 of 3 results.
Comments