cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372260 Triangle read by rows: T(n, k) = (T(n-1, k-1) + T(n-1, k)) * 2 * n with initial values T(n, 0) = Sum_{i=0..n} (-1)^(n-i) * binomial(n, i) * A001147(i) and T(i, j) = 0 if j > i.

Original entry on oeis.org

1, 0, 2, 2, 8, 8, 8, 60, 96, 48, 60, 544, 1248, 1152, 384, 544, 6040, 17920, 24000, 15360, 3840, 6040, 79008, 287520, 503040, 472320, 230400, 46080, 79008, 1190672, 5131392, 11067840, 13655040, 9838080, 3870720, 645120, 1190672, 20314880, 101153024, 259187712, 395566080, 375889920, 219340800, 72253440, 10321920
Offset: 0

Views

Author

Werner Schulte, Apr 24 2024

Keywords

Examples

			Triangle T(n, k) starts:
n\k :     0       1       2        3        4       5       6      7
====================================================================
  0 :     1
  1 :     0       2
  2 :     2       8       8
  3 :     8      60      96       48
  4 :    60     544    1248     1152      384
  5 :   544    6040   17920    24000    15360    3840
  6 :  6040   79008  287520   503040   472320  230400   46080
  7 : 79008 1190672 5131392 11067840 13655040 9838080 3870720 645120
  etc.
		

Crossrefs

Cf. A053871 (column 0), 2*A179540 (column 1), A000165 (main diagonal).
Cf. A001147.

Programs

  • Maple
    T := proc(n, k) option remember; `if`(k > n, 0, `if`(k = n, 2^n * n!, `if`(k = 0, `if`(n < 2, 1 - n, (2*n - 2) * (T(n-1, k) + T(n-2, k))), (T(n-1, k-1) + T(n-1, k)) * 2*n))) end:
    for n from 0 to 7 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Apr 25 2024
  • Mathematica
    T[n_,k_]:=n!SeriesCoefficient[(Exp[-t]/Sqrt[1 - 2*t])*(2*t/(1-2*t))^k,{t,0,n}]; Table[T[n,k],{n,0,8},{k,0,n}]//Flatten (* Stefano Spezia, Apr 25 2024 *)
  • PARI
    {  T(n, k) = if(k>n, 0, if(k==n, 2^n * n!, if(k==0, if(n<2, 1-n,
             (2*n-2) * (T(n-1, k) + T(n-2, k))), (T(n-1, k-1) + T(n-1, k)) * 2*n)))  }
    
  • PARI
    memo = Map(); memoize(f, A[..]) =
    { my(res);
      if(!mapisdefined(memo, [f, A], &res), res = call(f, A);
      mapput(memo, [f, A], res)); res; }
    T(n, k) =
    { if(k>n, 0, if(k==n, 2^n * n!, if(k==0, if(n<2, 1 - n,
      (2 * n - 2) * (memoize(T, n-1, k) + memoize(T, n-2, k))),
      (memoize(T, n-1, k-1) + memoize(T, n-1, k)) * 2 * n))); }

Formula

T(n, 0) = (2*n - 2) * (T(n-1, 0) + T(n-2, 0)) for n > 1 with initial values T(n, 0) = 1 - n for n < 2 (see A053871).
T(n, k) = (Sum_{i=0..k} binomial(k, i) * T(n-i, 0)) * 2^(2*k) * binomial(n, k) / binomial(2*k, k).
E.g.f. of column k: (exp(-t) / sqrt(1 - 2*t)) * (2*t / (1 - 2*t))^k.
E.g.f.: exp((2*x / (1 - 2*t) - 1) * t) / sqrt(1 - 2*t).