A372262 a(n) = smallest number m > 0 such that n followed by m 3's yields a prime, or -1 if no such m exists.
1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 14, 2, -1, 1, 1, -1, 1, 3, -1, 1, 1, -1, 8, 1, -1, 1, 1, -1, 1, 4, -1, 2, 1, -1, 1, 1, -1, 483, 2, -1, 1, 1, -1, 1, 2, -1, 2, 1, -1, 1, 2, -1, 3, 1, -1, 6, 1, -1, 1, 5, -1, 1, 1, -1, 1, 1, -1, 5, 3, -1, 1, 1, -1, 3, 1, -1, 2, 4
Offset: 1
Examples
a(20)=3 because 203 and 2033 are composite but 20333 is prime.
Links
- Toshitaka Suzuki, Table of n, a(n) for n = 1..816
Programs
-
Mathematica
snm[n_]:=Module[{k=1},If[Mod[n,3]==0,-1,While[CompositeQ[FromDigits[ PadRight[ IntegerDigits[ n],k+ IntegerLength[ n],3]]],k++];k]]; Array[snm,80] (* Harvey P. Dale, Aug 06 2024 *)
Comments