A372280 Composite numbers k such that the digits of k are in nondecreasing order while the digits of the concatenation of k's ascending order prime factors, with repetition, are in nonincreasing order.
4, 8, 9, 16, 22, 25, 27, 33, 44, 49, 55, 77, 88, 99, 125, 128, 155, 256, 279, 1477, 1555, 1688, 1899, 2799, 3479, 3577, 14777, 16888, 18999, 22599, 36799, 444577, 455777, 1112447, 1555555, 2555555, 2799999, 3577777, 3799999, 45577777, 124556677, 155555555555, 279999999999
Offset: 1
Examples
444577 is a term as 444577 = 7 * 7 * 43 * 211, and 444577 has nondecreasing digits while its prime factor concatenation "7743211" has nonincreasing digits.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..64 (all terms <= 20 digits)
Programs
-
Python
from sympy import factorint, isprime from itertools import count, islice, combinations_with_replacement as mc def ni(s): return s == "".join(sorted(s, reverse=True)) def bgen(d): yield from ("".join(m) for m in mc("0123456789", d) if m[0]!="0") def agen(): # generator of terms for d in count(1): for s in bgen(d): t = int(s) if t < 4 or isprime(t): continue if ni("".join(str(p)*e for p,e in factorint(t).items())): yield t print(list(islice(agen(), 41))) # Michael S. Branicky, Apr 26 2024
Extensions
a(42)-a(43) from Michael S. Branicky, Apr 26 2024
Comments