cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A372308 Composite numbers k such that the digits of k are in nonincreasing order while the digits of the concatenation of k's ascending order prime factors, with repetition, are in nondecreasing order.

Original entry on oeis.org

4, 6, 8, 9, 10, 20, 21, 30, 32, 40, 42, 50, 54, 60, 63, 64, 70, 72, 74, 75, 80, 81, 84, 90, 92, 94, 96, 98, 100, 111, 200, 210, 222, 300, 320, 333, 400, 420, 432, 441, 444, 500, 531, 540, 553, 554, 600, 611, 630, 632, 640, 666, 700, 711, 720, 750, 752, 800, 810, 840, 851, 864, 871, 875, 882
Offset: 1

Views

Author

Scott R. Shannon, Apr 26 2024

Keywords

Comments

As all the numbers 10,20,...,90,100 are terms, all numbers that are recursively 10 times these values are also terms as they just add an additional 2 and 5 to their parent's prime factor list.
A number 999...9998 will be a term if it has two prime factors 2 and 4999...999. Therefore 999999999999998 and 999...9998 (with 54 9's) are both terms. See A056712.

Examples

			42 is a term as 42 = 2 * 3 * 7, and 42 has nonincreasing digits while its prime factor concatenation "237" has nondecreasing digits.
		

Crossrefs

Programs

  • Python
    from sympy import factorint, isprime
    from itertools import count, islice, combinations_with_replacement as mc
    def nd(s): return s == "".join(sorted(s))
    def bgen(d):
        yield from ("".join(m) for m in mc("9876543210", d) if m[0]!="0")
    def agen(): # generator of terms
        for d in count(1):
            out = set()
            for s in bgen(d):
                t = int(s)
                if t < 4 or isprime(t): continue
                if nd("".join(str(p)*e for p,e in factorint(t).items())):
                    out.add(t)
            yield from sorted(out)
    print(list(islice(agen(), 65))) # Michael S. Branicky, Apr 26 2024

A372295 Composite numbers k such that k's prime factors are distinct, the digits of k are in nonincreasing order while the digits of the concatenation of k's ascending order prime factors are in nondecreasing order.

Original entry on oeis.org

6, 10, 21, 30, 42, 70, 74, 94, 111, 210, 222, 553, 554, 611, 851, 871, 885, 998, 5530, 5554, 7751, 8441, 8655, 9998, 85511, 95554, 99998, 9999998, 77744411, 5555555554, 7777752221, 8666666655, 755555555554, 95555555555554, 999999999999998, 5555555555555554, 8666666666666655, 755555555555555554
Offset: 1

Views

Author

Scott R. Shannon, Apr 25 2024

Keywords

Comments

A number 999...9998 will be a term if it has two prime factors 2 and 4999...999. Therefore 999999999999998 and 999...9998 (with 54 9's) are both terms. See A056712.
The next term is greater than 10^11.

Examples

			77744411 is a term as 77744411 = 233 * 333667 which has distinct prime factors, 77744411 has nonincreasing digits while its prime factor concatenation "233333667" has nondecreasing digits.
		

Crossrefs

Programs

  • Python
    from sympy import factorint, isprime
    from itertools import count, islice, combinations_with_replacement as mc
    def nd(s): return s == "".join(sorted(s))
    def bgen(d):
        yield from ("".join(m) for m in mc("9876543210", d) if m[0]!="0")
    def agen(): # generator of terms
        for d in count(1):
            out = set()
            for s in bgen(d):
                t = int(s)
                if t < 4 or isprime(t): continue
                f = factorint(t)
                if len(f) < sum(f.values()): continue
                if nd("".join(str(p) for p in f)):
                    out.add(t)
            yield from sorted(out)
    print(list(islice(agen(), 29))) # Michael S. Branicky, Apr 26 2024

Extensions

a(33)-a(38) from Michael S. Branicky, Apr 26 2024

A372335 For a positive number k, let L(k) denote the list consisting of k followed by the prime factors of k, with repetition, in nondecreasing order; sequence gives composite k such that the digits of L(k) alternate being larger than and then smaller than the previous digit.

Original entry on oeis.org

14, 15, 78, 161, 591, 1214, 1317, 1318, 1326, 1407, 1418, 1438, 1506, 1509, 1514, 1527, 1538, 1618, 1626, 1646, 1658, 1703, 1714, 1718, 1734, 1739, 1758, 1814, 1834, 1838, 1839, 1857, 1858, 1934, 1938, 2307, 2427, 2509, 2517, 2534, 2535, 2715, 2757, 2758, 2869, 2958, 3419, 3439, 3514, 3523
Offset: 1

Views

Author

Scott R. Shannon, Apr 28 2024

Keywords

Comments

No term can end in 0 or 2; a number ending in 2 would mean the first prime factor is 2, which would disqualify the number, while a number ending in 0 would mean the first 3 distinct prime factors would have to be 2, 3, 5 or 2, 5, either of which would also disqualify the number.

Examples

			161 is a term as 161 = 7 * 23 which when concatenated give "161723", the digits of which alternate from being larger than and then smaller than the previous digit.
		

Crossrefs

A372336 For a positive number k, let L(k) denote the list consisting of k followed by the prime factors of k, with repetition, in nondecreasing order; sequence gives composite k such that the digits of L(k) alternate being smaller than and then larger than the previous digit.

Original entry on oeis.org

6, 51, 91, 106, 219, 323, 406, 435, 437, 518, 529, 609, 614, 626, 629, 634, 658, 703, 705, 818, 826, 838, 878, 906, 938, 978, 2051, 2093, 2173, 3053, 3241, 4151, 4171, 4281, 5041, 5063, 5141, 5183, 5241, 6251, 6591, 7021, 7081, 7251, 8051, 8121, 8491, 8571, 8781, 9121, 9231, 9291, 9583
Offset: 1

Views

Author

Scott R. Shannon, Apr 28 2024

Keywords

Comments

No term can end in 0 or 2; a number ending in 2 would mean the first prime factor is 2, which would disqualify the number, while a number ending in 0 would mean the first 3 distinct prime factors would have to be 2, 3, 5 or 2, 5, either of which would also disqualify the number.

Examples

			106 is a term as 106 = 2 * 53 which when concatenated give "106253", the digits of which alternate from being smaller than and then larger than the previous digit.
		

Crossrefs

A373645 The smallest number whose prime factor concatenation, as well as the number itself, when written in base n, contains all digits 0,1,...,(n-1).

Original entry on oeis.org

2, 11, 114, 894, 13155, 127041, 2219826, 44489860, 1023485967, 26436195405, 755182183459, 23609378957430, 802775563829902, 29480898988179429, 1162849454580682365
Offset: 2

Views

Author

Scott R. Shannon, Jun 12 2024

Keywords

Comments

For base 2 and base 3 the number is prime; are there other bases where this is also true?

Examples

			a(5) = 894 = 12034_5 which contains all the digits 0..4, and 894 = 2 * 3 * 149 = 2_5 * 3_5 * 1044_5, and the factors contain all digits 0..4.
a(10) = 1023485967 which contains all digits 0..9, and 1023485967 = 3 * 3 * 7 * 16245809, and the factors contain all digits 0..9.
a(15) = 29480898988179429 = 102345C86EA7BD9_15 which contains all the digits 0..E, and 29480898988179429 = 3 * 7 * 17 * 139 * 594097474723 = 3_15 * 7_15 * 12_15 * 94_15 * 106C1A8B5ED_15, and the factors contain all digits 0..E.
		

Crossrefs

A374225 Irregular triangle read by rows: T(n,k), n > 1 and k <= n, is the smallest composite number x whose set of digits and the set of digits in all prime factors of x, when written in base n, contain exactly k digits in common, or -1 if no such number exists.

Original entry on oeis.org

-1, 9, 4, 4, 8, 6, 15, 4, 6, 14, 30, 114, 4, 12, 10, 35, 190, 894, 4, 8, 33, 188, 377, 2355, 13155, 4, 16, 14, 66, 462, 3269, 22971, 127041, 4, 10, 66, 85, 762, 5359, 36526, 279806, 2219826, 4, 12, 39, 102, 1118, 9096, 62959, 572746, 5053742, 44489860, 4, 12, 95, 132
Offset: 2

Views

Author

Jean-Marc Rebert, Jul 01 2024

Keywords

Examples

			T(2, 1) = 9 = 3^2 -> 1001_2 = 11_2^2, have the digit 1 in common, and no lesser composite has this property.
T(6, 2) = 33 = 3 * 11 -> 53_6 = 3_6 * 15_6, have this 2 digits 3 and 5 in common, and no lesser composite has this property.
T(11, 6) = 174752 = 2^5 * 43 * 127 -> 10A326_11 = 2_11^5 * 3A_11 * 106_11, have the 6 digits 0, 1, 2, 3, 6 and A in common, and no lesser composite has this property.
The array begins:
  n\k:0,  1,  2,   3,    4,     5,    6,
  2: -1,  9,  4;
  3:  4,  8,  6,  15;
  4:  4,  6, 14,  30,  114;
  5:  4, 12, 10,  35,  190,   894;
  6:  4,  8, 33, 188,  377,  2355, 13155;
		

Crossrefs

Programs

  • PARI
    card(base,x)=my(m=factor(x),u=[],v=[],w=[]);my(u=Set(digits(x,base)));for(i=1,#m~,w=Set(digits(m[i,1],base));v=setunion(v,w));#setintersect(u,v)
    T(n,k)=my(x);if(k>n,return(0));if(n==2&&k==0,return(-1));forcomposite(m=max(2,n^(k-1)),oo,x=card(n,m);if(x==k,return(m)))
Showing 1-6 of 6 results.