A372283 Array read by upward antidiagonals: A(n, k) = R(A(n-1, k)) for n > 1, k >= 1; A(1, k) = 2*k-1, where Reduced Collatz function R(n) gives the odd part of 3n+1.
1, 1, 3, 1, 5, 5, 1, 1, 1, 7, 1, 1, 1, 11, 9, 1, 1, 1, 17, 7, 11, 1, 1, 1, 13, 11, 17, 13, 1, 1, 1, 5, 17, 13, 5, 15, 1, 1, 1, 1, 13, 5, 1, 23, 17, 1, 1, 1, 1, 5, 1, 1, 35, 13, 19, 1, 1, 1, 1, 1, 1, 1, 53, 5, 29, 21, 1, 1, 1, 1, 1, 1, 1, 5, 1, 11, 1, 23, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 35, 25
Offset: 1
Examples
Array begins: n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ---+----------------------------------------------------------------------- 1 | 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 2 | 1, 5, 1, 11, 7, 17, 5, 23, 13, 29, 1, 35, 19, 41, 11, 47, 25, 53, 3 | 1, 1, 1, 17, 11, 13, 1, 35, 5, 11, 1, 53, 29, 31, 17, 71, 19, 5, 4 | 1, 1, 1, 13, 17, 5, 1, 53, 1, 17, 1, 5, 11, 47, 13, 107, 29, 1, 5 | 1, 1, 1, 5, 13, 1, 1, 5, 1, 13, 1, 1, 17, 71, 5, 161, 11, 1, 6 | 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 13, 107, 1, 121, 17, 1, 7 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 161, 1, 91, 13, 1, 8 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 121, 1, 137, 5, 1, 9 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 91, 1, 103, 1, 1, 10 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 137, 1, 155, 1, 1, 11 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 103, 1, 233, 1, 1, 12 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 155, 1, 175, 1, 1, 13 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 233, 1, 263, 1, 1, 14 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 175, 1, 395, 1, 1, 15 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 263, 1, 593, 1, 1, 16 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 395, 1, 445, 1, 1,
Links
Crossrefs
Arrays derived from this one or related to:
A372361 terms xored with binary words of the same length, either of the form 10101...0101 or 110101...0101, depending on whether the binary length is odd or even,
Programs
-
Mathematica
With[{dmax = 15}, Table[#[[k, n-k+1]], {n, dmax}, {k, n}] & [Array[NestList[(3*# + 1)/2^IntegerExponent[3*# + 1, 2] &, 2*# - 1, dmax - #] &, dmax]]] (* Paolo Xausa, Apr 29 2024 *)
-
PARI
up_to = 91; R(n) = { n = 1+3*n; n>>valuation(n, 2); }; A372283sq(n,k) = if(1==n,2*k-1,R(A372283sq(n-1,k))); A372283list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A372283sq((a-(col-1)),col))); (v); }; v372283 = A372283list(up_to); A372283(n) = v372283[n];
Comments