cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A371100 Array A read by upward antidiagonals in which the entry A(n,k) in row n and column k is defined by A(n, k) = 4^n*(6*k - 3 - 2*(-1)^n) + (4^n - 1)/3, n,k >= 1.

Original entry on oeis.org

21, 21, 45, 341, 117, 69, 341, 725, 213, 93, 5461, 1877, 1109, 309, 117, 5461, 11605, 3413, 1493, 405, 141, 87381, 30037, 17749, 4949, 1877, 501, 165, 87381, 185685, 54613, 23893, 6485, 2261, 597, 189, 1398101, 480597, 283989, 79189, 30037, 8021, 2645, 693, 213, 1398101, 2970965, 873813, 382293, 103765, 36181, 9557, 3029, 789, 237
Offset: 1

Views

Author

Antti Karttunen and Ali Sada, Apr 18 2024

Keywords

Examples

			The top left corner of the array:
n\k|      1       2       3        4        5        6        7        8
---+--------------------------------------------------------------------------
1  |     21,     45,     69,      93,     117,     141,     165,     189, ...
2  |     21,    117,    213,     309,     405,     501,     597,     693, ...
3  |    341,    725,   1109,    1493,    1877,    2261,    2645,    3029, ...
4  |    341,   1877,   3413,    4949,    6485,    8021,    9557,   11093, ...
5  |   5461,  11605,  17749,   23893,   30037,   36181,   42325,   48469, ...
6  |   5461,  30037,  54613,   79189,  103765,  128341,  152917,  177493, ...
7  |  87381, 185685, 283989,  382293,  480597,  578901,  677205,  775509, ...
8  |  87381, 480597, 873813, 1267029, 1660245, 2053461, 2446677, 2839893, ...
...
		

Crossrefs

Cf. A372351 (same terms, in different order), A372290 (sorted into ascending order, without duplicates), A372293 (odd numbers that do not occur here).
Leftmost column is A144864 duplicated, without its initial 1.
Row 1: A102603.

Programs

  • Mathematica
    A371100[n_, k_] := 4^n*(6*k - 3 - 2*(-1)^n) + (4^n - 1)/3;
    Table[A371100[n - k + 1, k], {n, 10}, {k, n}] (* Paolo Xausa, Apr 21 2024 *)
  • PARI
    up_to = 55;
    A371100sq(n,k) = 4^n*(6*k - 3 - 2*(-1)^n) + (4^n - 1)/3;
    A371100list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A371100sq((a-(col-1)),col))); (v); };
    v371100 = A371100list(up_to);
    A371100(n) = v371100[n];

Formula

A(n, k) = A007283(n)*A257852(n,k) + A079319(n).
A(n, k) = A371094(A257852(n,k)).
A(n+2, k) = 5 + 16*A(n,k).

A372351 Odd bisection of A371094.

Original entry on oeis.org

21, 21, 341, 45, 117, 69, 341, 93, 213, 117, 5461, 141, 309, 165, 725, 189, 405, 213, 1877, 237, 501, 261, 1109, 285, 597, 309, 5461, 333, 693, 357, 1493, 381, 789, 405, 3413, 429, 885, 453, 1877, 477, 981, 501, 87381, 525, 1077, 549, 2261, 573, 1173, 597, 4949, 621, 1269, 645, 2645, 669, 1365, 693, 11605, 717
Offset: 1

Views

Author

Antti Karttunen, Apr 28 2024

Keywords

Crossrefs

Row 2 of A372282.
Cf. A371094, and array A371100 (gives the same terms, in different order).
Cf. A372290 (the range of this sequence), A372291 (numbers that occur only once), A372292 (more than once), A372293 (odd numbers not occurring here).

Programs

  • Mathematica
    Table[With[{e = IntegerExponent[6*n - 2, 2]}, (6*n - 2)*2^e + (4^e - 1)/3], {n, 100}] (* Paolo Xausa, Apr 29 2024 *)
  • PARI
    A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
    A372351(n) = A371094(n+n-1);
    
  • Python
    def A372351(n): return ((m:=6*n-2)<<(e:=(~m & m-1).bit_length()))+((1<<(e<<1))-1)//3 # Chai Wah Wu, Apr 28 2024

Formula

a(n) = A371094(2*n-1).
Showing 1-2 of 2 results.