cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372299 Primitive infinitary abundant numbers (definition 2): infinitary abundant numbers (A129656) having no proper infinitary divisors that are infinitary abundant numbers.

Original entry on oeis.org

24, 30, 40, 42, 54, 56, 66, 70, 72, 78, 88, 96, 102, 104, 114, 138, 150, 174, 186, 222, 246, 258, 282, 294, 318, 354, 366, 402, 420, 426, 438, 474, 486, 498, 534, 540, 582, 606, 618, 642, 654, 660, 678, 726, 756, 762, 780, 786, 822, 834, 894, 906, 924, 942, 945, 960, 978, 990
Offset: 1

Views

Author

Amiram Eldar, Apr 25 2024

Keywords

Examples

			24 is a term since it is an infinitary abundant number and none of its proper infinitary divisors, {1, 2, 3, 4, 6, 8, 12}, are infinitary abundant numbers.
The least infinitary abundant number that is not primitive is 120. It has 3 infinitary divisors, 24, 30, and 40, that are also infinitary abundant numbers.
		

Crossrefs

Subsequence of A129656.
A372298 is a subsequence.
Similar sequences: A091191, A302574, A339940.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]];
    isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; iabQ[n_] := isigma[n] > 2*n; idivs[1] = {1};
    idivs[n_] := Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, e_Integer} :> p^Select[Range[0, e], BitOr[e, #] == e &])];
    q[n_] := Module[{d = idivs[n]}, Total[d] > 2*n && AllTrue[Most[d], !iabQ[#] &]]; Select[Range[1000], q]
  • PARI
    isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); }
    idivs(n) = {my(f = factor(n), d = divisors(f), idiv = []); for (k=1, #d, if (isidiv(d[k], f), idiv = concat(idiv, d[k])); ); idiv; } \\ Michel Marcus at A077609
    isigma(n) = {my(f = factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1+f[i, 1]^(2^(#b-k)), 1)))} ;
    is(n) = isigma(n) > 2*n && select(x -> x < n && isigma(x) > 2*x, idivs(n)) == [];