cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372310 Number of permutations of length n avoiding the pattern 1324 and with 1 appearing before n.

Original entry on oeis.org

1, 3, 11, 45, 198, 919, 4446, 22239, 114347, 601722, 3229614, 17632437, 97707195, 548538588, 3115293151, 17875151109, 103511938302, 604392787819, 3555410248782, 21057224371290, 125484804821226, 752020468811244, 4530163818778839, 27419805899781843, 166694596163875206
Offset: 2

Views

Author

Michael D. Weiner, Apr 26 2024

Keywords

Comments

This sequence counts the number of permutations of size n written in one-line notation that avoid the pattern 1324 and have the 1 appearing before the n.

Examples

			For n=4, a(4)=11 is counting the permutations (in one-line notation): 1234, 1243, 1342, 1423, 1432, 2134, 2143, 2314, 3124, 3142, 3214.
		

Crossrefs

Invert of shifted A000139.

Programs

  • Maple
    f:= proc(n) f(n):= 2*(3*n)!/((2*n+1)!*(n+1)!) end:
    a:= proc(n) option remember; `if`(n=1, 1,
          add(a(n-i)*f(i), i=1..n))
        end:
    seq(a(n), n=2..26);  # Alois P. Heinz, Apr 26 2024
  • Mathematica
    a[1] = 1; a[n_] := a[n] = 2*Sum[a[n-k]*(3*k)!/((2*k + 1)!*(k+1)!), {k, 1, n-1}]; Table[a[n], {n, 2, 30}] (* Vaclav Kotesovec, Jul 06 2024 *)

Formula

G.f.: A(x) = (x*(B(x)-2))/(3-B(x)), where B(x) is the g.f. for A000139. (See arxiv paper by Gil, Lopez, Weiner.)
G.f. satisfies 0 = x^4*(8*x-1) + x^2*(9*x-1)*(4*x-1)*A(x) + x*(6*x-1)*(9*x-2)*A(x)^2 + (27*x^2-9*x+1)*A(x)^3.
a(n) ~ 3^(3*n - 9/2) / (sqrt(Pi) * n^(5/2) * 2^(2*n - 5)). - Vaclav Kotesovec, Jul 06 2024
D-finite with recurrence 4*(n-1)*(2*n-5)*a(n) -6*(n-2)*(23*n-63)*a(n-1) +9*(99*n^2-567*n+818)*a(n-2) +81*(-31*n^2+215*n-374)*a(n-3) +243*(3*n-13)*(3*n-14)*a(n-4)=0. - R. J. Mathar, Sep 27 2024