A372311 Triangle read by rows: T(n, k) = n^k * Sum_{j=0..n} binomial(n - j, n - k) * Eulerian1(n, j).
1, 1, 1, 1, 6, 8, 1, 21, 108, 162, 1, 60, 800, 3840, 6144, 1, 155, 4500, 48750, 225000, 375000, 1, 378, 21672, 453600, 4354560, 19595520, 33592320, 1, 889, 94668, 3500658, 60505200, 536479440, 2371803840, 4150656720
Offset: 0
Examples
Triangle begins: [0] 1; [1] 1, 1; [2] 1, 6, 8; [3] 1, 21, 108, 162; [4] 1, 60, 800, 3840, 6144; [5] 1, 155, 4500, 48750, 225000, 375000; [6] 1, 378, 21672, 453600, 4354560, 19595520, 33592320; [7] 1, 889, 94668, 3500658, 60505200, 536479440, 2371803840, 4150656720;
Crossrefs
Programs
-
Maple
S := (n, k) -> local j; add(eulerian1(n, j)*binomial(n-j, n-k), j = 0..n): row := n -> local k; seq(S(n, k) * n^k, k = 0..n): seq(row(n), n = 0..8);
-
SageMath
def A372311_row(n) : x = polygen(ZZ, 'x') A = [] for m in range(0, n + 1, 1) : A.append((-x)^m) for j in range(m, 0, -1): A[j - 1] = j * (A[j - 1] - A[j]) return [n^k*c for k, c in enumerate(A[0])] for n in (0..7) : print(A372311_row(n))