A372314 Determinant of the matrix [Jacobi(i^2 + 3*i*j + 2*j^2, 2*n + 1)]_{1 < i, j < 2*n}, where Jacobi(a, m) denotes the Jacobi symbol (a / m).
1, 3, 0, 125, -1215, 0, 0, 9126441, 0, -187590821, 0, 0, 20686753425, 0, 0, 0, 9224101117395305225, 0, 881852208012283730302080, 624391710361368134976, 0, -3428714319207136609529065, 0, 0, 3878246452353765171209988566241, 0, 0, 4308304210666498856284267223158421
Offset: 2
Keywords
Examples
a(2) = 1 since the determinant of the matrix [Jacobi(i^2 + 3*i*j + 2*j^2, 5)]_{1 < i, j < 2*2} = [1,0; 0,1] is 1.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 2..73
- D. Krachun, F. Petrov, Z.-W. Sun and M. Vsemirnov, On some determinants involving Jacobi symbols, Finite Fields Appl. 64 (2010), Article 101672.
- Z.-W. Sun, On some determinants with Legendre symbol entries, Finite Fields Appl. 56 (2019), 285-307.
Programs
-
Mathematica
a[n_]:=a[n]=Det[Table[JacobiSymbol[i^2+3*i*j+2*j^2,2n+1],{i,2,2n-1},{j,2,2n-1}]]; tab={};Do[tab=Append[tab,a[n]],{n,2,29}];Print[tab]
-
PARI
f(i,j) = i^2 + 3*i*j + 2*j^2; a(n) = matdet(matrix(2*n-2, 2*n-2, i, j, kronecker(f(i+1,j+1), 2*n+1))); vector(25, n, a(n+1)) \\ Michel Marcus, Apr 27 2024
Comments