A372324 Expansion of e.g.f. arcsin(x)^2/(2*(1 - x)).
0, 0, 1, 3, 16, 80, 544, 3808, 32768, 294912, 3096576, 34062336, 423493632, 5505417216, 79199207424, 1187988111360, 19423989596160, 330207823134720, 6050282848911360, 114955374129315840, 2333627101111910400, 49006169123350118400, 1091943568123940044800
Offset: 0
Keywords
Links
- Muhammad Adam Dombrowski and Gregory Dresden, Areas Between Cosines, arXiv:2404.17694 [math.CO], 2024.
Crossrefs
Cf. A296726.
Programs
-
Mathematica
Table[n! SeriesCoefficient[ArcSin[x]^2/(2 (1 - x)), {x, 0, n}], {n, 0, 22}]
Formula
a(2*n+1) = (2*n+1)*a(2*n).
a(2*n) = (2*n)*(2*n-1)*a(2*n-2) + ((2*n-2)!!)^2.
a(n) = (n!)*Sum_{k=0..(n-2)/2} ((2*k)!!)/(((2*k+1)!!)*(2*k+2)).
E.g.f.: arcsin(x)^2/(2*(1 - x)).
a(n) ~ n! * (Pi^2/8) * (1 - 2^(5/2)/(Pi^(3/2)*sqrt(n))). - Vaclav Kotesovec, May 01 2024
D-finite with recurrence a(n) -n*a(n-1) -(n-2)^2*a(n-2) +(n-2)^3*a(n-3)=0. - R. J. Mathar, May 02 2024
Comments