A372385 Determinant of the matrix [Jacobi(i - j, 2n + 1)]_{0 < i, j < n}, where Jacobi(a, m) denotes the Jacobi symbol (a/m).
0, 1, 2, 1, 8, 16, 2, 1, -56, 1, 0, 0, 44, 1, 127776, 1067089, 592, 7311616, 22, 1, 0, 1, 0, 98867482624, 132, 1933242748921, 31578700795392, 1, 22108, 0, -6001552839958, 1, -2401383183590221824, 1, 818, 0, 95506686981729056, 1, 0, 1, 30328979503109918400, 208688450689382571638784, 394
Offset: 2
Keywords
Examples
a(3) = 1 since the determinant of the matrix [Jacobi(i-j, 2*3+1)]_{0 < i, j < 3} = [0, -1; 1, 0] has the value 1.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 2..144
- R. Chapman, Determinants of Legendre symbol matrices, preprint, 2003. (Cf. Conjecture 2 of this paper.)
- R. Chapman, Determinants of Legendre symbol matrices, Acta Arith. 115 (2004), 231-244.
- Z.-W. Sun, Conjectural values of some determinants involving Legendre symbols (I), Question 470324 at MathOverflow, April 30, 2024.
- M. Vsemirnov, On the evaluation of R. Chapman's "evil determinant", Linear Algebra Appl. 436 (2012), 4101-4106.
- M. Vsemirnov, On R. Chapman's "evil determinant": case p == 1(mod 4), Acta Arith. 159 (2013), 331-344; see also the arXiv version, arXiv:1108.4031 [math.NT], 2011-2012.
Programs
-
Mathematica
a[n_]:=a[n]=Det[Table[JacobiSymbol[i-j, 2n+1], {i, 1, n-1}, {j, 1, n-1}]]; tab={}; Do[tab=Append[tab, a[n]], {n, 2, 44}]; Print[tab]
-
PARI
a(n) = matdet(matrix(n-1, n-1, i, j, kronecker(i-j, 2*n+1))); \\ Michel Marcus, Apr 29 2024
-
Python
from sympy import Matrix, jacobi_symbol def A372385(n): return Matrix(n-1,n-1,[jacobi_symbol(i-j,(n<<1)|1) for i in range(n-1) for j in range(n-1)]).det() # Chai Wah Wu, Apr 29 2024
Comments