cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372387 Decimal expansion of Sum_{k>=0} (-1)^k*(k^2+1) / (k^4+1).

Original entry on oeis.org

2, 1, 3, 4, 1, 5, 4, 5, 7, 1, 0, 8, 7, 5, 7, 8, 3, 3, 2, 0, 8, 8, 4, 0, 0, 4, 0, 8, 9, 6, 6, 3, 6, 4, 2, 1, 2, 0, 4, 7, 1, 3, 2, 7, 0, 5, 3, 1, 0, 1, 4, 4, 6, 5, 9, 8, 1, 4, 5, 6, 1, 0, 1, 0, 3, 0, 9, 5, 8, 4, 8, 3, 1, 8, 2, 0, 5, 0, 6, 7, 1, 2, 3, 8, 2, 4
Offset: 0

Views

Author

Clark Kimberling, May 12 2024

Keywords

Examples

			0.2134154571087578332088400408966364212047132705...
		

Crossrefs

Cf. A372386.

Programs

  • Mathematica
    s = Sum[(-1)^k * (k^2 + 1)/(k^4 + 1), {k, 0, Infinity}]
    d = Chop[N[s, 100]]
    First[RealDigits[d]]
    RealDigits[1/2 + Sqrt[2]*Pi*Cos[Pi/Sqrt[2]]*Sinh[Pi/Sqrt[2]] / (Cosh[Sqrt[2]*Pi] - Cos[Sqrt[2]*Pi]), 10, 120][[1]] (* Vaclav Kotesovec, May 14 2024 *)
  • PARI
    sumalt(k=0, (-1)^k*(k^2+1)/(k^4+1)) \\ Michel Marcus, May 15 2024

Formula

Equals 1/2 + sqrt(2)*Pi*cos(Pi/sqrt(2))*sinh(Pi/sqrt(2))/(cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi)). - Vaclav Kotesovec, May 14 2024