A372395 Total number of acyclic orientations in all complete multipartite graphs K_lambda, where lambda ranges over all partitions of n.
1, 1, 3, 11, 65, 411, 3535, 31081, 337185, 3846557, 50329253, 691740489, 10725769171, 172411994899, 3050277039465, 56428854605627, 1124781474310649, 23349607769846667, 518744693882444419, 11949343411110856153, 291921874093876965453, 7395266131906154621501
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..333
- Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
- Wikipedia, Acyclic orientation
- Wikipedia, Multipartite graph
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add( expand(x*g(n-j))*binomial(n-1, j-1), j=1..n)) end: b:= proc(t, n, i) option remember; `if`(n=0, t!*(-1)^t, `if`(i<1, 0, b(t, n, i-1)+add(coeff(g(i), x, m)* b(t+m, n-i, min(n-i, i)), m=0..i))) end: a:= n-> abs(b(0, n$2)): seq(a(n), n=0..21);
-
Mathematica
g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n - j]]*Binomial[n - 1, j - 1], {j, 1, n}]]; b[t_, n_, i_] := b[t, n, i] = If[n == 0, t!*(-1)^t, If[i < 1, 0, b[t, n, i - 1] + Sum[Coefficient[g[i], x, m]*b[t + m, n - i, Min[n - i, i]], {m, 0, i}]]]; a[n_] := Abs[b[0, n, n]]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jul 24 2024, after Alois P. Heinz *)
Comments