A372396 Triangle T(n,k) in which row n lists in increasing order the number of acyclic orientations of complete multipartite graphs K_lambda, where lambda is a partition of n; triangle T(n,k), n>=0, k = 1..A000041(n), read by rows.
1, 1, 1, 2, 1, 4, 6, 1, 8, 14, 18, 24, 1, 16, 46, 54, 78, 96, 120, 1, 32, 146, 162, 230, 330, 384, 426, 504, 600, 720, 1, 64, 454, 486, 1066, 1374, 1536, 1902, 2286, 2616, 3000, 3216, 3720, 4320, 5040, 1, 128, 1394, 1458, 4718, 5658, 6144, 6902, 10554, 12090
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1; 1, 2; 1, 4, 6; 1, 8, 14, 18, 24; 1, 16, 46, 54, 78, 96, 120; 1, 32, 146, 162, 230, 330, 384, 426, 504, 600, 720; ...
Links
- Alois P. Heinz, Rows n = 0..28, flattened
- Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
- Wikipedia, Acyclic orientation
- Wikipedia, Multipartite graph
Crossrefs
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add( expand(x*g(n-j))*binomial(n-1, j-1), j=1..n)) end: h:= proc() option remember; local q, l, b; q, l, b:= -1, args, proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)* (q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j])) end; abs(b(0, nops(l))) end: b:= proc(n, i, l) `if`(n=0 or i=1, [h([l[], 1$n, 0])], [b(n-i, min(n-i, i), [l[], i])[], b(n, i-1, l)[]]) end: T:= n-> sort(b(n$2, []))[]: seq(T(n), n=0..10);
Comments