A372399 Numbers k such that A124652(k) does not divide A372111(k-1).
2, 4, 6, 8, 9, 10, 14, 19, 21, 23, 25, 32, 34, 35, 36, 37, 38, 39, 45, 47, 48, 52, 54, 56, 57, 61, 65, 74, 75, 76, 77, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 94, 96, 97, 99, 100, 106, 108, 110, 113, 114, 122, 123, 130, 136, 142, 153, 157, 158, 159, 170, 171
Offset: 1
Keywords
Examples
a(1) = 2 since b(2) = 2 does not divide s(1) = 1. a(2) = 4 since b(4) = 4 does not divide s(3) = 6. a(3) = 6 since b(6) = 9 does not divide s(5) = 15. a(4) = 8 since b(8) = 8 does not divide s(7) = 30. a(5) = 9 since b(9) = 16 does not divide s(8) = 38, etc. Table of b(k) and s(k-1), where k = a(n), n = 2..12. Asterisked k denote terms such that rad(b(k)) | rad(s(k-1)); k = 73 and k = 4316 are the only other known indices where the terms have this quality. k b(k) s(k-1) ---------------------------------------------------------- 4 4 = 2^2 6 = 2 * 3 6 9 = 3^2 15 = 3 * 5 8 8 = 2^3 30 = 2 * 3 * 5 9 16 = 2^4 38 = 2 * 19 10* 12 = 2^2 * 3 54 = 2 * 3^3 14* 28 = 2^2 * 7 98 = 2 * 7^2 19 32 = 2^5 216 = 2^3 * 3^3 21 81 = 3^4 279 = 3^2 * 31 23 20 = 2^2 * 5 370 = 2 * 5 * 37 25 169 = 13^2 403 = 13 * 31 32 49 = 7^2 728 = 2^3 * 7 * 13 ... 73* 100 = 2^2 * 5^2 4800 = 2^6 * 3 * 5^2 ... 4316* 4720 = 2^4 * 5 * 59 30806850 = 2 * 3 * 5^2 * 59^3
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Log log scatterplot of A124652(n), n = 1..10^5, showing A124652(a(n)) in red.
Programs
-
Mathematica
nn = 120; c[_] := False; rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; f[x_] := Select[Range[x], Divisible[x, rad[#]] &]; Array[Set[{a[#], c[#]}, {#, True}] &, 2]; s = a[1] + a[2]; {2}~Join~Reap[Do[ r = f[s]; k = SelectFirst[r, ! c[#] &]; If[! Divisible[s, k], Sow[i]]; c[k] = True; s += k, {i, 3, nn}] ][[-1, 1]]
Comments