A372400 Position of 30^n among 5-smooth numbers A051037.
1, 18, 83, 228, 486, 888, 1466, 2255, 3283, 4583, 6189, 8134, 10445, 13158, 16305, 19916, 24027, 28667, 33870, 39665, 46086, 53166, 60937, 69429, 78675, 88709, 99561, 111263, 123849, 137347, 151793, 167219, 183658, 201139, 219695, 239359, 260165, 282141, 305320
Offset: 0
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
Table[Sum[Floor@ Log[5, 30^n/(2^i*3^j)] + 1, {i, 0, Log[2, 30^n]}, {j, 0, Log[3, 30^n/2^i]}], {n, 0, 38}]
-
PARI
a(n)=my(t=30^n,u=5*t); sum(a=0,logint(t,5), u\=5; sum(b=0,logint(u,3), logint(u\3^b,2)+1)) \\ Charles R Greathouse IV, Sep 18 2024
-
Python
# uses imports/function in A372401 print(list(islice(A372401gen(p=5), 40))) # Michael S. Branicky, Jun 05 2024
-
Python
from sympy import integer_log def A372400(n): c, x = 0, 30**n for i in range(integer_log(x,5)[0]+1): for j in range(integer_log(y:=x//5**i,3)[0]+1): c += (y//3**j).bit_length() return c # Chai Wah Wu, Sep 16 2024
Formula
a(n) = k*n^3 + (3k/2)*n^2 + O(n) where k = (log 30)^3/(6 log 2 log 3 log 5) = 5.35057081984.... - Charles R Greathouse IV, Sep 19 2024
Comments