cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372400 Position of 30^n among 5-smooth numbers A051037.

Original entry on oeis.org

1, 18, 83, 228, 486, 888, 1466, 2255, 3283, 4583, 6189, 8134, 10445, 13158, 16305, 19916, 24027, 28667, 33870, 39665, 46086, 53166, 60937, 69429, 78675, 88709, 99561, 111263, 123849, 137347, 151793, 167219, 183658, 201139, 219695, 239359, 260165, 282141, 305320
Offset: 0

Views

Author

Michael De Vlieger, Jun 03 2024

Keywords

Comments

Also position of 30^(n+1) in A143207.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Floor@ Log[5, 30^n/(2^i*3^j)] + 1, {i, 0, Log[2, 30^n]}, {j, 0, Log[3, 30^n/2^i]}], {n, 0, 38}]
  • PARI
    a(n)=my(t=30^n,u=5*t); sum(a=0,logint(t,5), u\=5; sum(b=0,logint(u,3), logint(u\3^b,2)+1)) \\ Charles R Greathouse IV, Sep 18 2024
  • Python
    # uses imports/function in A372401
    print(list(islice(A372401gen(p=5), 40))) # Michael S. Branicky, Jun 05 2024
    
  • Python
    from sympy import integer_log
    def A372400(n):
        c, x = 0, 30**n
        for i in range(integer_log(x,5)[0]+1):
            for j in range(integer_log(y:=x//5**i,3)[0]+1):
                c += (y//3**j).bit_length()
        return c # Chai Wah Wu, Sep 16 2024
    

Formula

a(n) = k*n^3 + (3k/2)*n^2 + O(n) where k = (log 30)^3/(6 log 2 log 3 log 5) = 5.35057081984.... - Charles R Greathouse IV, Sep 19 2024