cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A372401 Position of 210^n among 7-smooth numbers A002473.

Original entry on oeis.org

1, 68, 547, 2119, 5817, 13008, 25412, 45078, 74409, 116147, 173379, 249532, 348375, 474018, 630922, 823885, 1058051, 1338898, 1672260, 2064302, 2521535, 3050825, 3659361, 4354687, 5144682, 6037582, 7041946, 8166692, 9421074, 10814695, 12357491, 14059744, 15932086, 17985473
Offset: 0

Views

Author

Michael De Vlieger, Jun 03 2024

Keywords

Comments

Also position of 210^(n+1) in A147571.

Crossrefs

Programs

  • Mathematica
    Table[
      Sum[Floor@ Log[7, 210^n/(2^i*3^j*5^k)] + 1,
        {i, 0, Log[2, 210^n]},
        {j, 0, Log[3, 210^n/2^i]},
        {k, 0, Log[5, 210^n/(2^i*3^j)]}],
      {n, 0, 12}]
  • Python
    import heapq
    from itertools import islice
    from sympy import primerange
    def A372401gen(p=7): # generator for p-smooth terms
        v, oldv, psmooth_primes, = 1, 0, list(primerange(1, p+1))
        h = [(1, [0]*len(psmooth_primes))]
        idx = {psmooth_primes[i]:i for i in range(len(psmooth_primes))}
        loc = 0
        while True:
            v, e = heapq.heappop(h)
            if v != oldv:
                loc += 1
                if len(set(e)) == 1:
                    yield loc
                oldv = v
                for p in psmooth_primes:
                    vp, ep = v*p, e[:]
                    ep[idx[p]] += 1
                    heapq.heappush(h, (v*p, ep))
    print(list(islice(A372401gen(), 15))) # Michael S. Branicky, Jun 05 2024
    
  • Python
    from sympy import integer_log
    def A372401(n):
        c, x = 0, 210**n
        for i in range(integer_log(x,7)[0]+1):
            for j in range(integer_log(m:=x//7**i,5)[0]+1):
                for k in range(integer_log(r:=m//5**j,3)[0]+1):
                    c += (r//3**k).bit_length()
        return c # Chai Wah Wu, Sep 16 2024

Formula

a(n) ~ c * n^4, where c = log(210)^4/(24*log(2)*log(3)*log(5)*log(7)) = 14.282278766622... - Vaclav Kotesovec and Amiram Eldar, Sep 22 2024

A372402 Position of 2310^n among 11-smooth numbers A051038.

Original entry on oeis.org

1, 283, 3847, 20996, 74228, 203084, 469053, 960396, 1797086, 3135610, 5173909, 8156188, 12377846, 18190320, 26005929, 36302854, 49629820, 66611231, 87951744, 114441450, 146960432, 186483973, 234087084, 290949702, 358361266, 437725888, 530566933, 638532124, 763398291, 907076258
Offset: 0

Views

Author

Michael De Vlieger, Jun 03 2024

Keywords

Comments

Also position of 2310^(n+1) in A147572.

Crossrefs

Programs

  • Mathematica
    Table[
      Sum[Floor@ Log[11, 2310^n/(2^i*3^j*5^k*7^m)] + 1,
        {i, 0, Log[2, 2310^n]},
        {j, 0, Log[3, 2310^n/2^i]},
        {k, 0, Log[5, 2310^n/(2^i*3^j)]},
        {m, 0, Log[7, 2310^n/(2^i*3^j*5^k)]}],
      {n, 0, 8}]
  • Python
    # uses imports/function in A372401
    print(list(islice(A372401gen(p=11), 7))) # Michael S. Branicky, Jun 05 2024
    
  • Python
    from sympy import integer_log, prevprime
    def A372402(n):
        def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        return g(2310**n,11) # Chai Wah Wu, Sep 16 2024

Extensions

a(14)-a(18) from Michael S. Branicky, Jun 05 2024
More terms from David A. Corneth, Jun 05 2024
Showing 1-2 of 2 results.