cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A202821 Position of 6^n among 3-smooth numbers A003586.

Original entry on oeis.org

1, 5, 14, 26, 43, 64, 89, 119, 153, 191, 233, 279, 330, 385, 444, 507, 575, 646, 722, 802, 886, 975, 1067, 1164, 1266, 1371, 1481, 1595, 1713, 1835, 1961, 2092, 2227, 2366, 2509, 2657, 2809, 2965, 3125, 3289, 3458, 3630, 3807, 3989, 4174, 4364, 4558, 4756
Offset: 0

Views

Author

Zak Seidov, Dec 25 2011

Keywords

Examples

			a(0) = 1 because A003586(1) = 6^0 = 1.
a(1) = 5 because A003586(5) = 6^1 = 6.
a(2) = 14 because A003586(14) = 6^2 = 36.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Floor[Log[3, 6^n/2^i]] + 1, {i, 0, Log2[6^n]}]; Array[a, 50, 0] (* Amiram Eldar, Jul 15 2023 *)
  • Python
    # uses imports/function in A372401
    print(list(islice(A372401gen(p=3), 1000))) # Michael S. Branicky, Jun 06 2024
    
  • Python
    from sympy import integer_log
    def A202821(n): return 1+n*(n+1)+sum((m:=3**i).bit_length()+((1<Chai Wah Wu, Oct 22 2024

Formula

A003586(a(n)) = 6^n, for n >= 0.
a(n) ~ (log(6))^2/(log(3)*log(4))*n^2 = 2.1079...*n^2.

A372400 Position of 30^n among 5-smooth numbers A051037.

Original entry on oeis.org

1, 18, 83, 228, 486, 888, 1466, 2255, 3283, 4583, 6189, 8134, 10445, 13158, 16305, 19916, 24027, 28667, 33870, 39665, 46086, 53166, 60937, 69429, 78675, 88709, 99561, 111263, 123849, 137347, 151793, 167219, 183658, 201139, 219695, 239359, 260165, 282141, 305320
Offset: 0

Views

Author

Michael De Vlieger, Jun 03 2024

Keywords

Comments

Also position of 30^(n+1) in A143207.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Floor@ Log[5, 30^n/(2^i*3^j)] + 1, {i, 0, Log[2, 30^n]}, {j, 0, Log[3, 30^n/2^i]}], {n, 0, 38}]
  • PARI
    a(n)=my(t=30^n,u=5*t); sum(a=0,logint(t,5), u\=5; sum(b=0,logint(u,3), logint(u\3^b,2)+1)) \\ Charles R Greathouse IV, Sep 18 2024
  • Python
    # uses imports/function in A372401
    print(list(islice(A372401gen(p=5), 40))) # Michael S. Branicky, Jun 05 2024
    
  • Python
    from sympy import integer_log
    def A372400(n):
        c, x = 0, 30**n
        for i in range(integer_log(x,5)[0]+1):
            for j in range(integer_log(y:=x//5**i,3)[0]+1):
                c += (y//3**j).bit_length()
        return c # Chai Wah Wu, Sep 16 2024
    

Formula

a(n) = k*n^3 + (3k/2)*n^2 + O(n) where k = (log 30)^3/(6 log 2 log 3 log 5) = 5.35057081984.... - Charles R Greathouse IV, Sep 19 2024

A372402 Position of 2310^n among 11-smooth numbers A051038.

Original entry on oeis.org

1, 283, 3847, 20996, 74228, 203084, 469053, 960396, 1797086, 3135610, 5173909, 8156188, 12377846, 18190320, 26005929, 36302854, 49629820, 66611231, 87951744, 114441450, 146960432, 186483973, 234087084, 290949702, 358361266, 437725888, 530566933, 638532124, 763398291, 907076258
Offset: 0

Views

Author

Michael De Vlieger, Jun 03 2024

Keywords

Comments

Also position of 2310^(n+1) in A147572.

Crossrefs

Programs

  • Mathematica
    Table[
      Sum[Floor@ Log[11, 2310^n/(2^i*3^j*5^k*7^m)] + 1,
        {i, 0, Log[2, 2310^n]},
        {j, 0, Log[3, 2310^n/2^i]},
        {k, 0, Log[5, 2310^n/(2^i*3^j)]},
        {m, 0, Log[7, 2310^n/(2^i*3^j*5^k)]}],
      {n, 0, 8}]
  • Python
    # uses imports/function in A372401
    print(list(islice(A372401gen(p=11), 7))) # Michael S. Branicky, Jun 05 2024
    
  • Python
    from sympy import integer_log, prevprime
    def A372402(n):
        def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        return g(2310**n,11) # Chai Wah Wu, Sep 16 2024

Extensions

a(14)-a(18) from Michael S. Branicky, Jun 05 2024
More terms from David A. Corneth, Jun 05 2024
Showing 1-3 of 3 results.